SPAD: Spatially Aware Multiview Diffusers

Yash Kant¹, Ziyi Wu¹, Michael Vasilkovsky², Guocheng Qian^{2,3}, Jian Ren², Riza Alp Guler², Bernard Ghanem³, *Sergey Tulyakov², *Igor Gilitschenski^{1,} *Aliaksandr Siarohin²

Task: Given text prompt of an object, we want to generate consistent novel views.

Task: Given text prompt of an object, we want to generate consistent novel views.

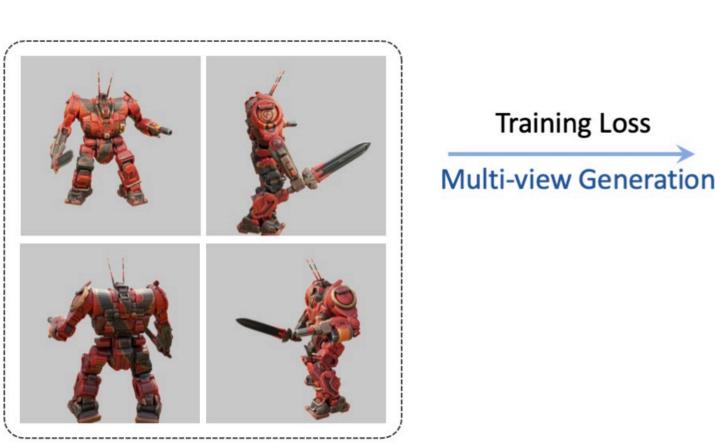
A knight's armored metal helmet with gold trim and holes

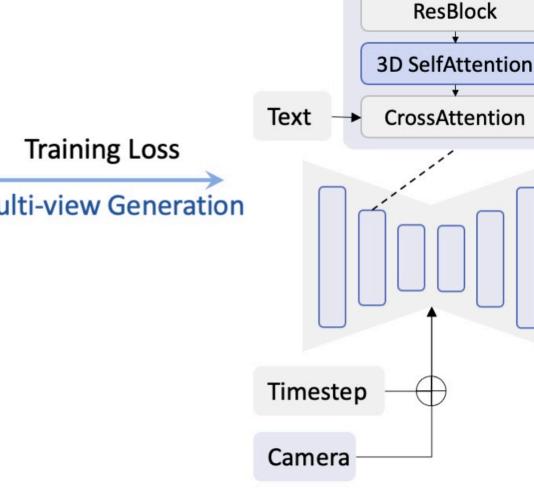
Task: Given text prompt of an object, we want to generate consistent novel views.

A knight's armored metal helmet with gold trim and holes

A small robot with a glass container on its head, metal legs, and a glass top

 Trained a Stable Diffusion (SD) to generate four orthogonal views of one object.

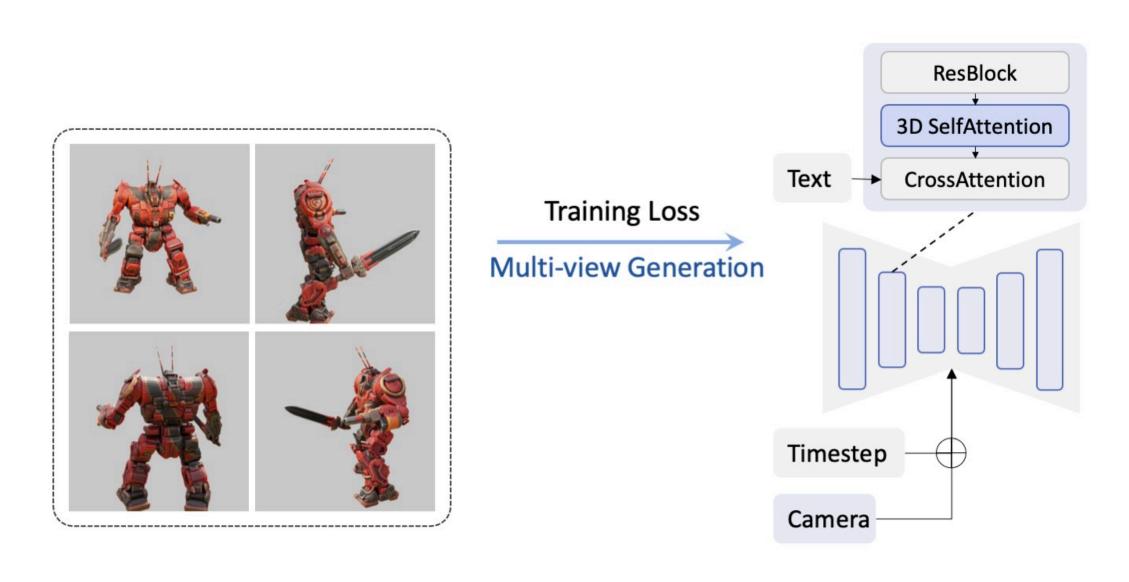




Rendered images

Multi-view Diffusion UNet

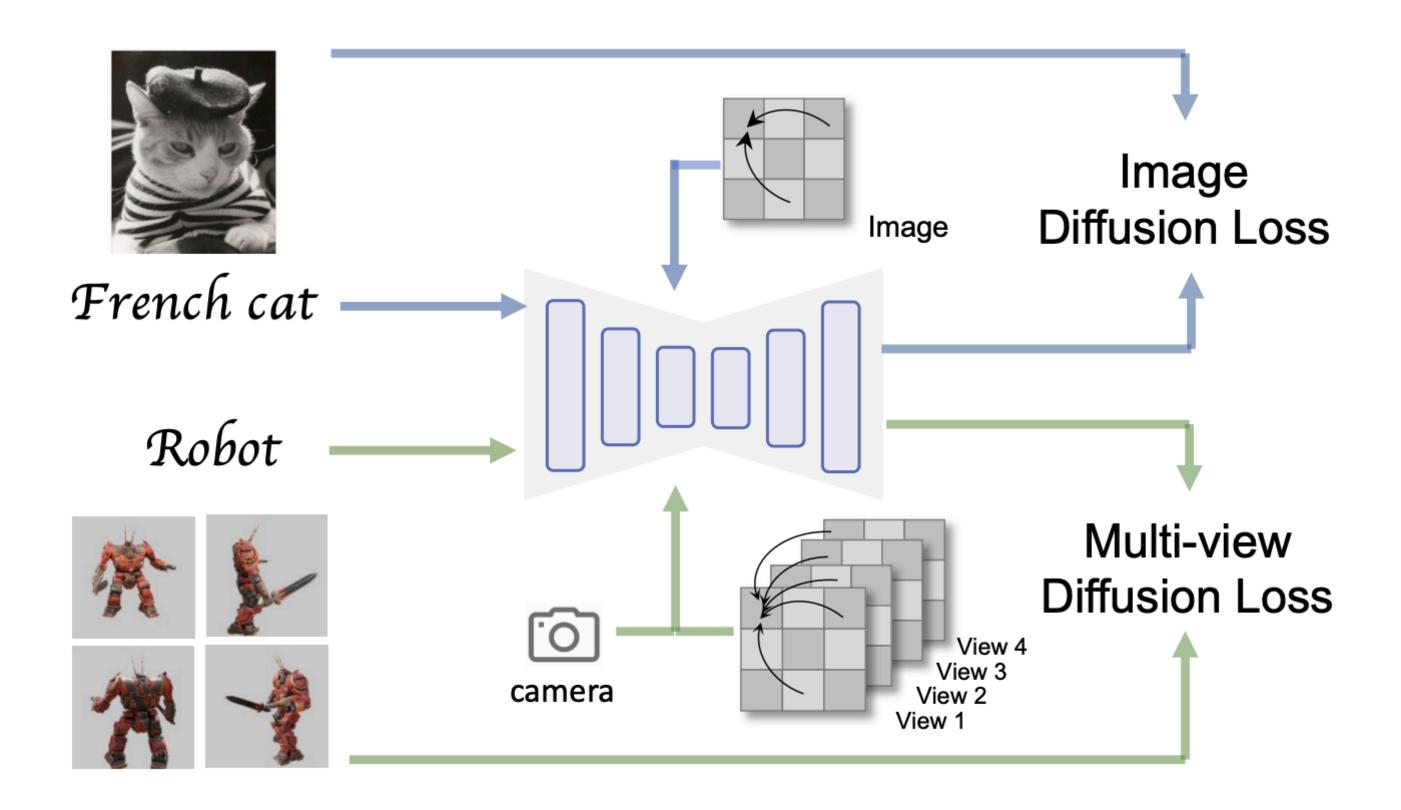
- Trained a Stable Diffusion (SD) to generate four orthogonal views of one object.
- Camera conditioning is injected into Diffusion Model (DM) — similar to timestep conditioning.



Rendered images

Multi-view Diffusion UNet

Self-attention inside SD is extended to attend 4 views jointly.



Multi-view Diffusion Training

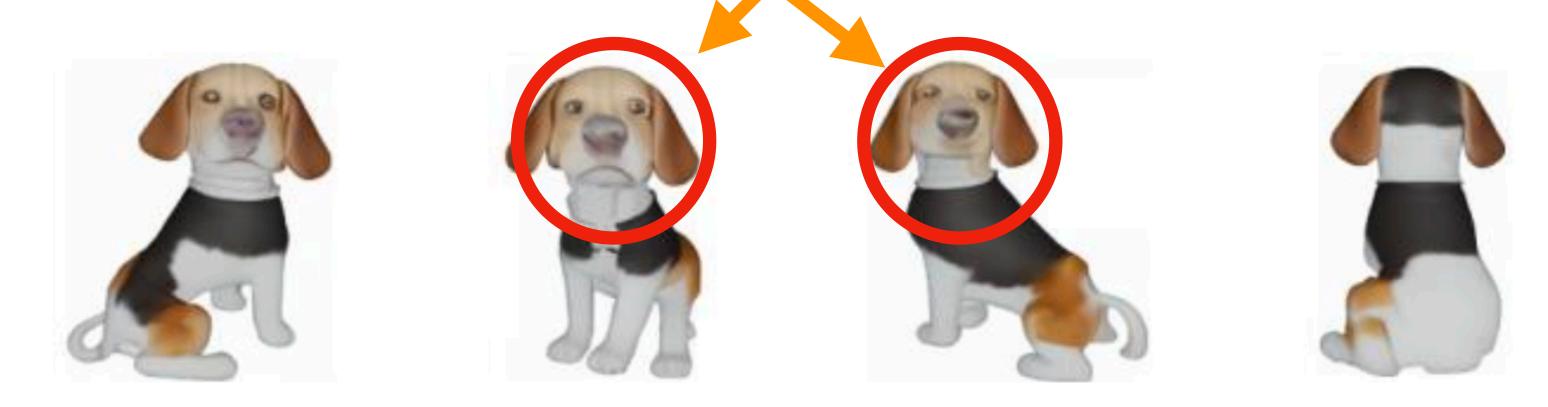
• Limitations. fixed and few viewpoints.

Vanilla **MV DM**

A beagle in a detective's outfit

• Limitations. fixed and few viewpoints.

Vanilla **MV DM**

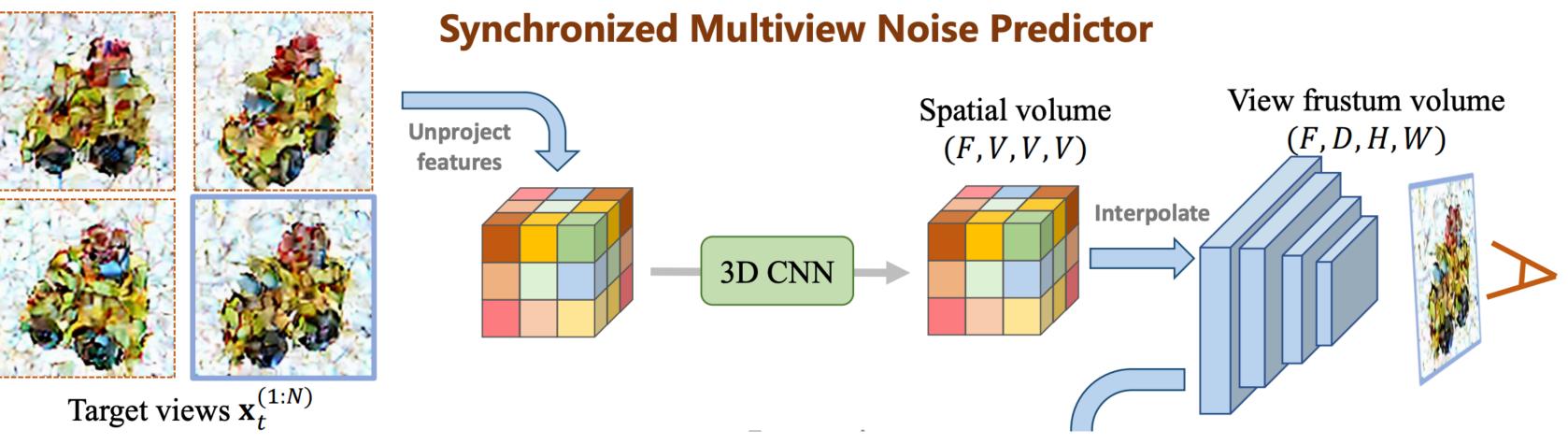


• no 3D bias to maintain consistency — copy-paste views.

2D front-facing bias

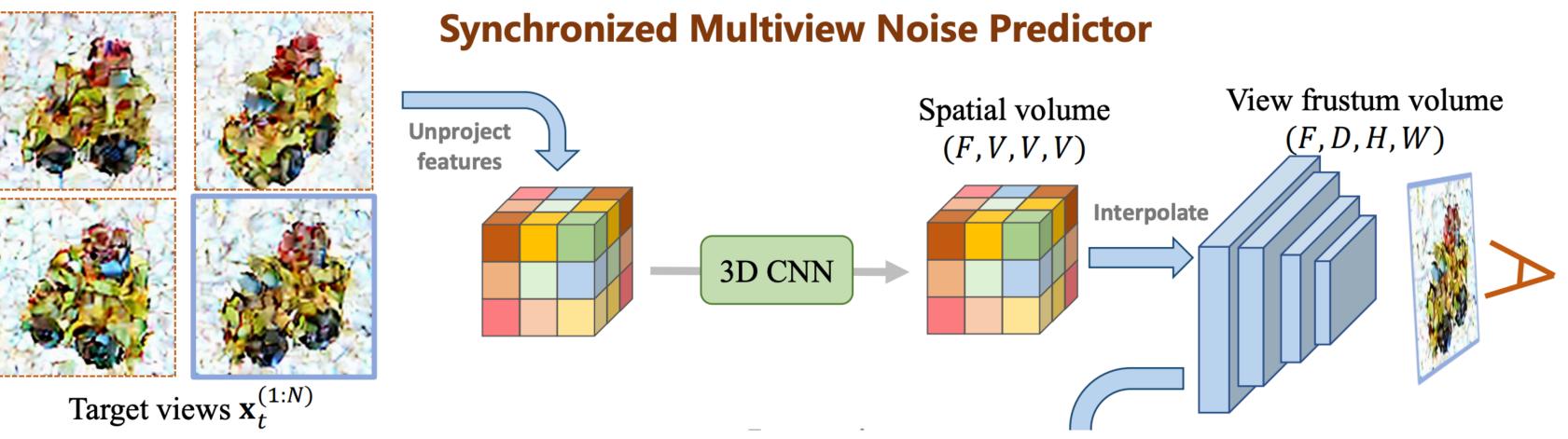
A beagle in a detective's outfit

• Given an image — generate many views at fixed elevation.

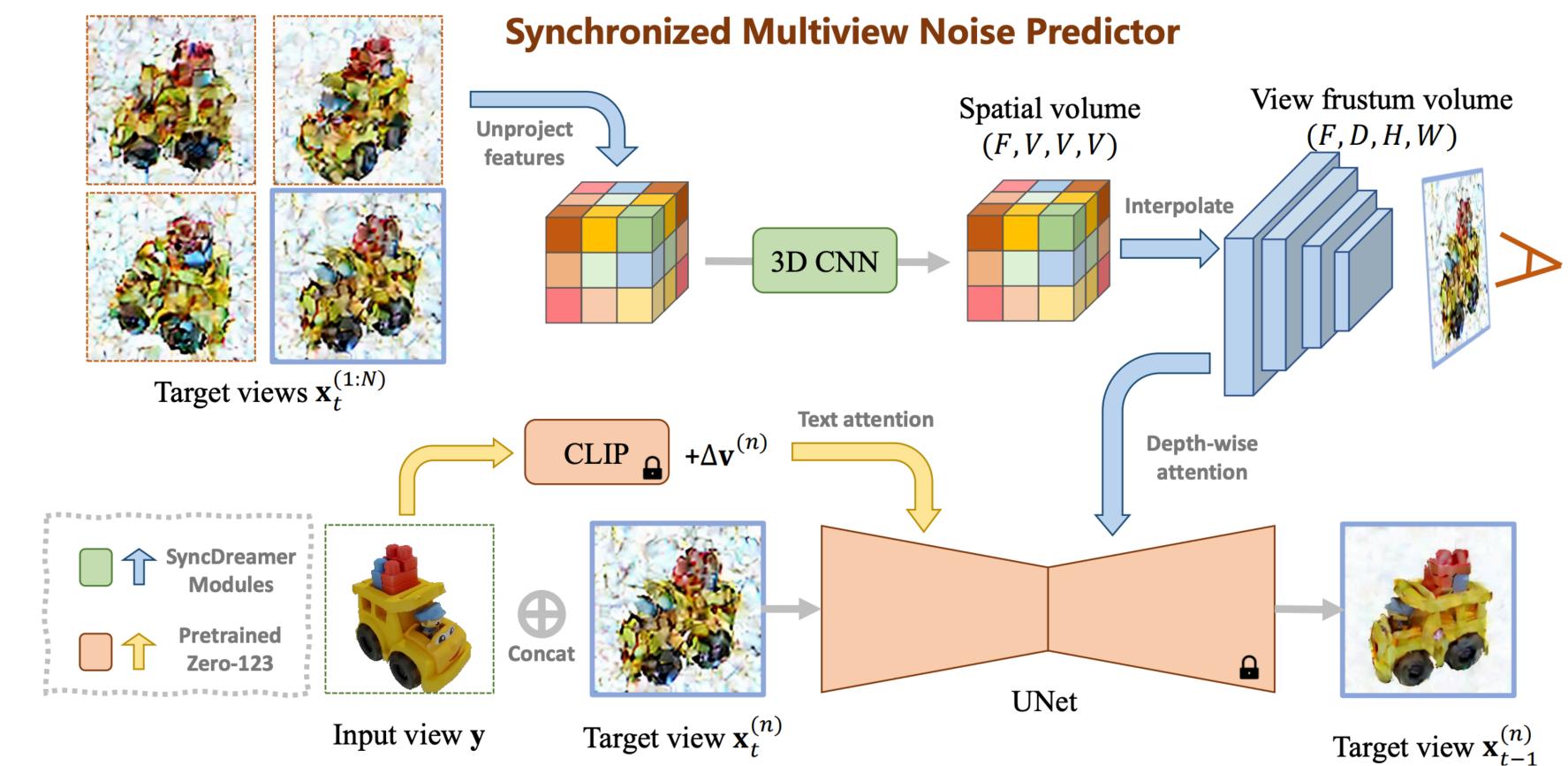


• Given an image — generate many views at fixed elevation.

• Extends Zero123 using a 3D latent space — views are aggregated, processed (3D-CNN) and extracted.



Extracted view is then injected within the self-attention layer to generate final target.



• Limitations. • 3D volume and CNN has huge memory footprint.

- Limitations.
 - 3D volume and CNN has huge memory footprint.
 - Tiny volume leads to artefacts

huge memory footprint.

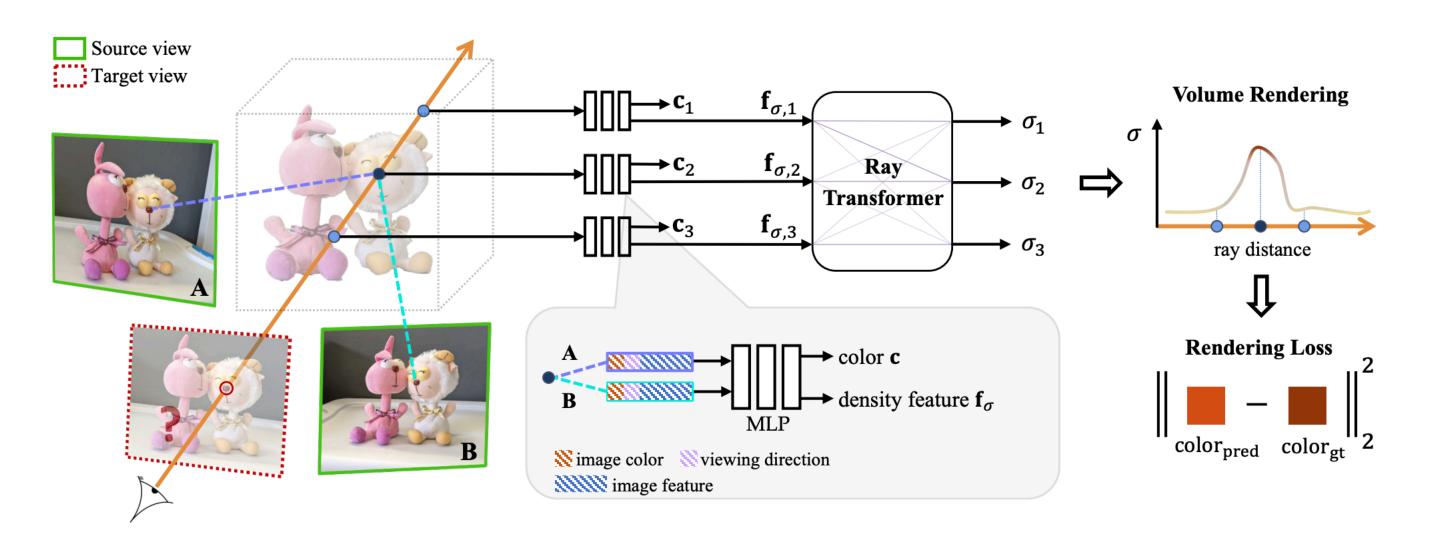
• Limitations.

3D volume and CNN has huge memory footprint. • Tiny volume leads to artefacts (dragon legs / ballbag)

5 legged dragon

SPAD: How to inject 3D bias in a scalable way?

Inspired by Image-Based rendering methods [IBRNet] —



IBRNet: Learning Multi-View Image-Based Rendering [Qianqian Wang, et al. CVPR, 2021]

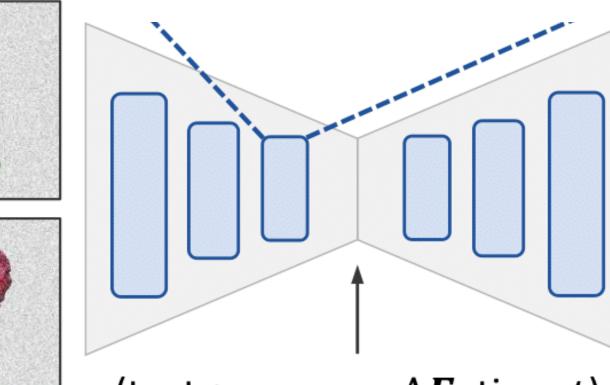
"Can we encode the 3D knowledge via correspondences" within multi-view self-attention layers?"

SPAD: How to inject 3D bias in a scalable way? Inspired by Image-Based rendering methods [IBRNet] — "Can we encode th via correspondences within mul on layers?" **Volume Rendering** $\rightarrow \sigma_2$ **Rendering Loss** → density feature **f**

IBRNet: Learning Multi-View Image-Based Rendering [Qiangian Wang, et al. CVPR, 2021]

SPAD: Multi-view Diffusion Model (MV-DM)

Noisy Multi-View (x_t^1, x_t^2)



(text y, camera ΔE , time t)

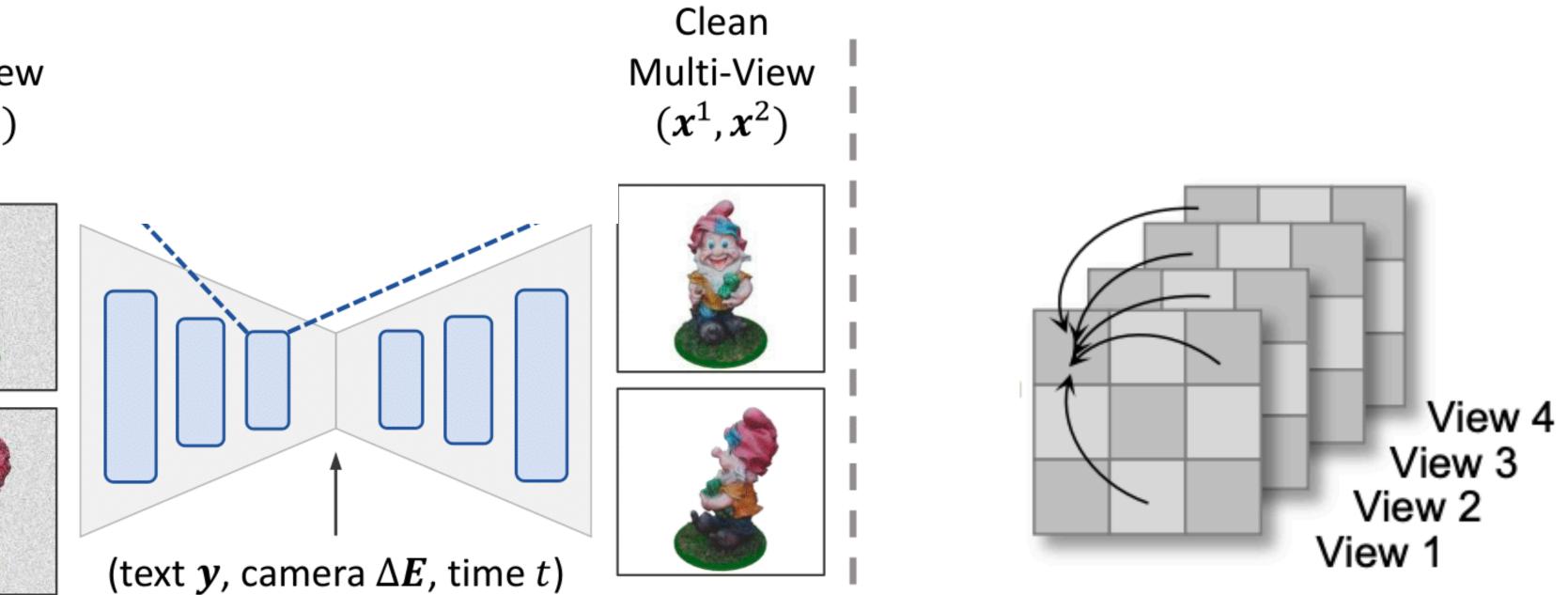
Multi-view Diffusion Model

We start with simple MVDream-style model — with dense selfattention layers.

> Clean Multi-View (x^1, x^2)

SPAD: Multi-view Diffusion Model (MV-DM)

Noisy Multi-View (x_t^1, x_t^2)



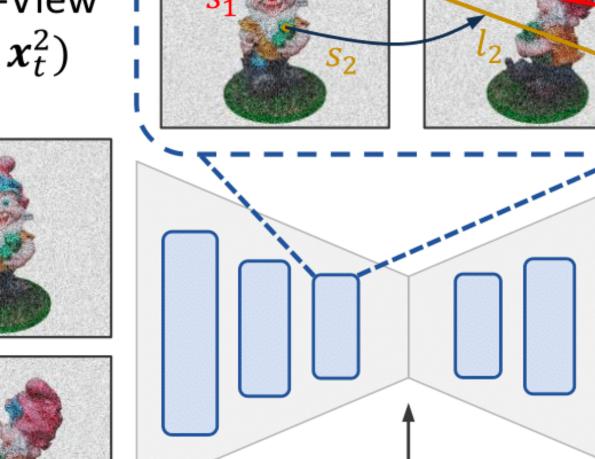
Multi-view Diffusion Model

We start with simple MVDream-style model — with dense selfattention layers.

Dense Attention

We mask the self-attention to attend along epipolar lines between views.

Noisy Multi-View (x_t^1, x_t^2)



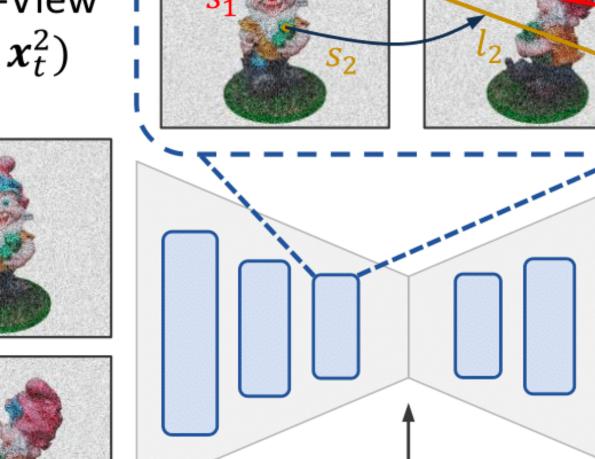
(text y, camera ΔE , time t)

Epipolar Attention

Multi-view Diffusion Model

We mask the self-attention to attend along epipolar lines between views.

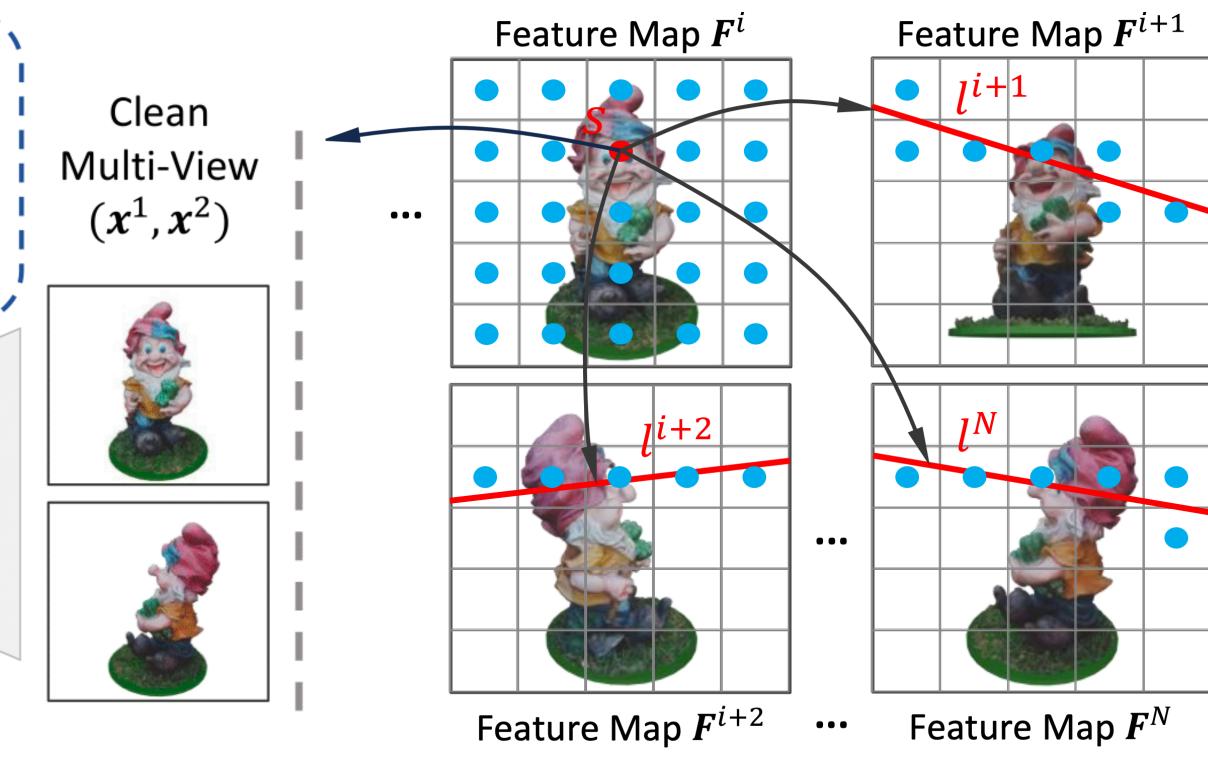
Noisy Multi-View (x_t^1, x_t^2)



(text y, camera ΔE , time t)

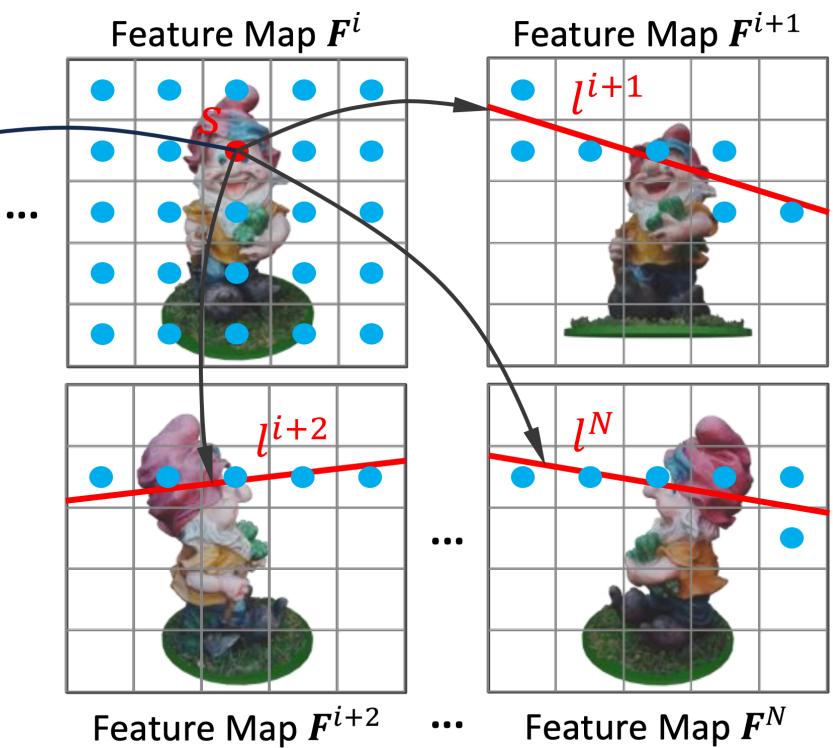
Epipolar Attention

Multi-view Diffusion Model



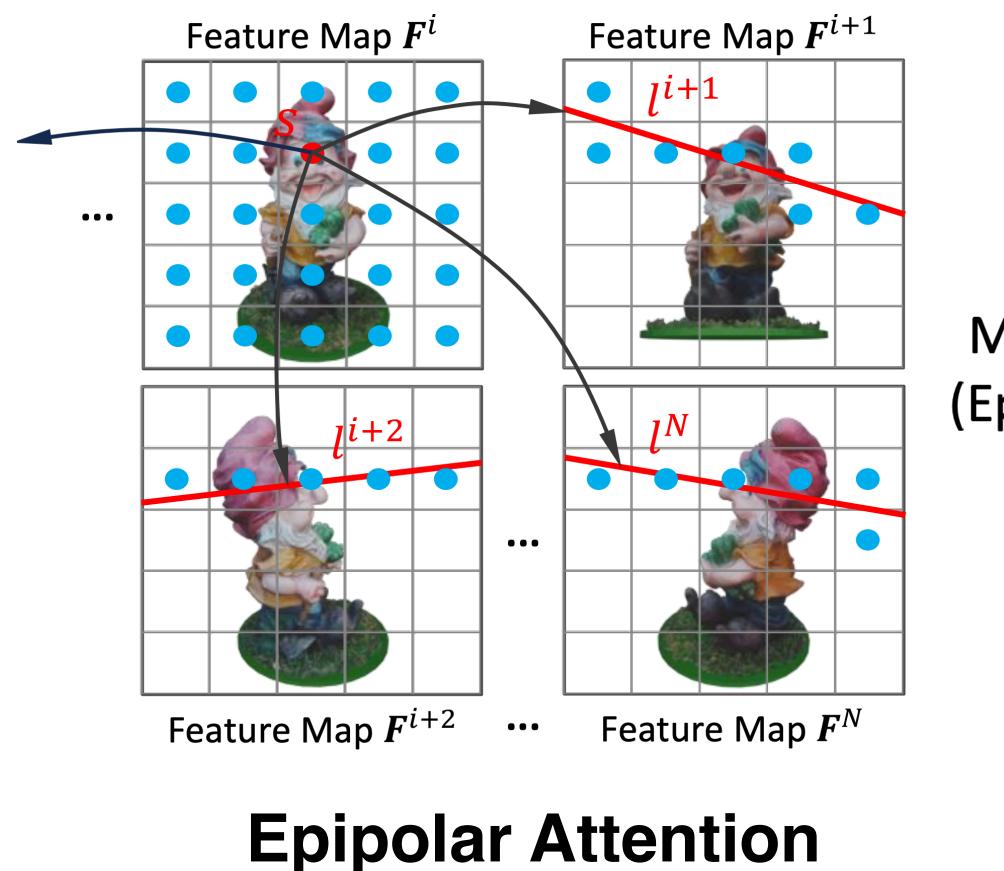
Epipolar Attention

Epipolar lines cannot reason about ray direction — this leads to flipped view generation.



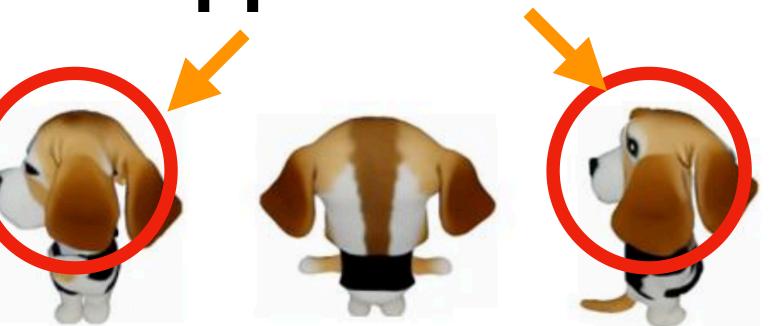
Epipolar Attention

Epipolar lines cannot reason about ray direction — this leads to flipped view generation.

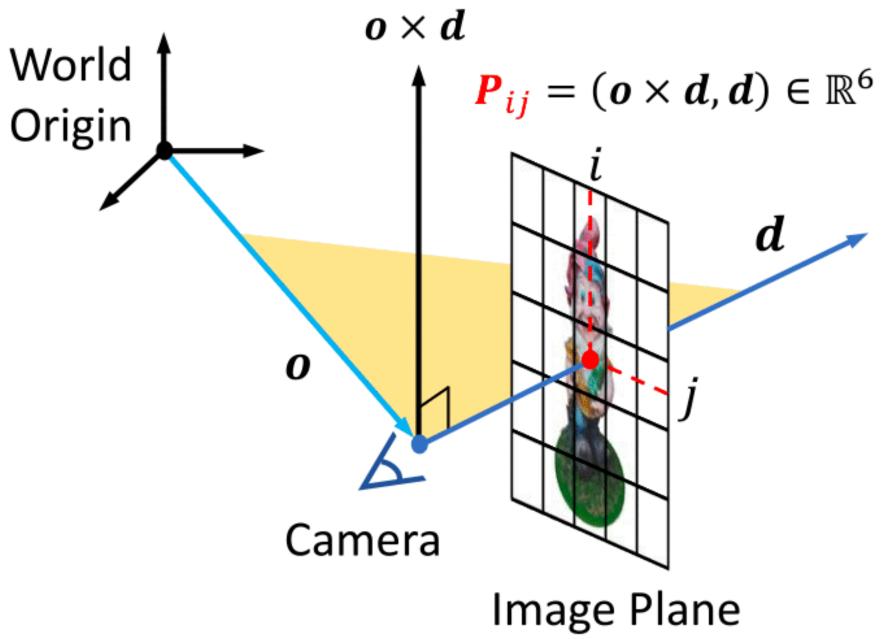


Flipped views

MV DM (Epipolar)



SPAD: Plucker Coordinates

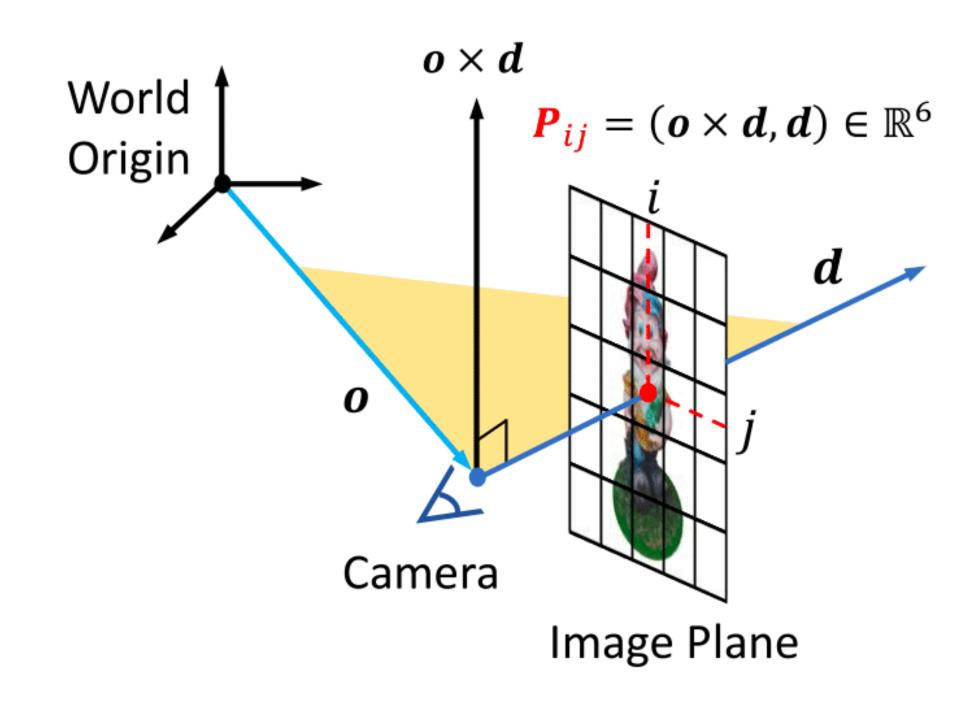


To reason about direction of the rays, we can use plucker coordinates

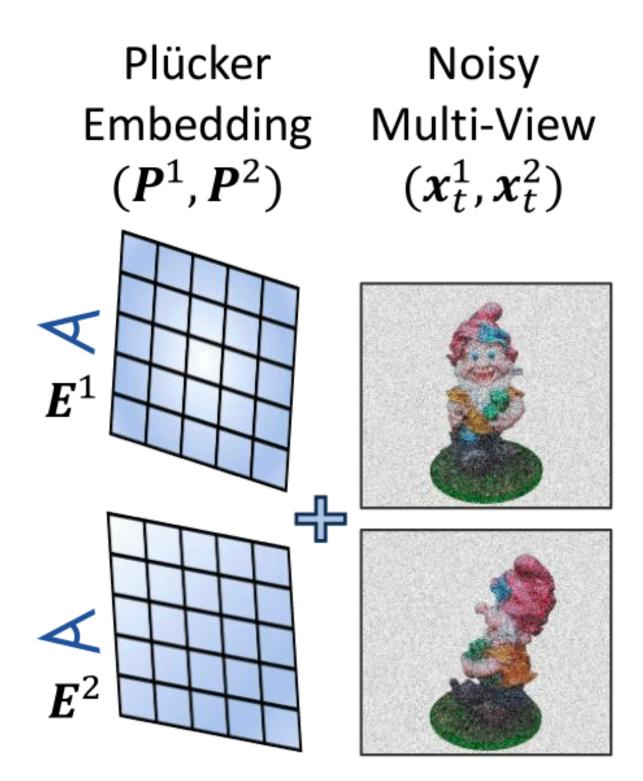
Plucker Coordinates

SPAD: Plucker Coordinates

To reason about direction of the rays, we can use plucker coordinates — as positional encoding.

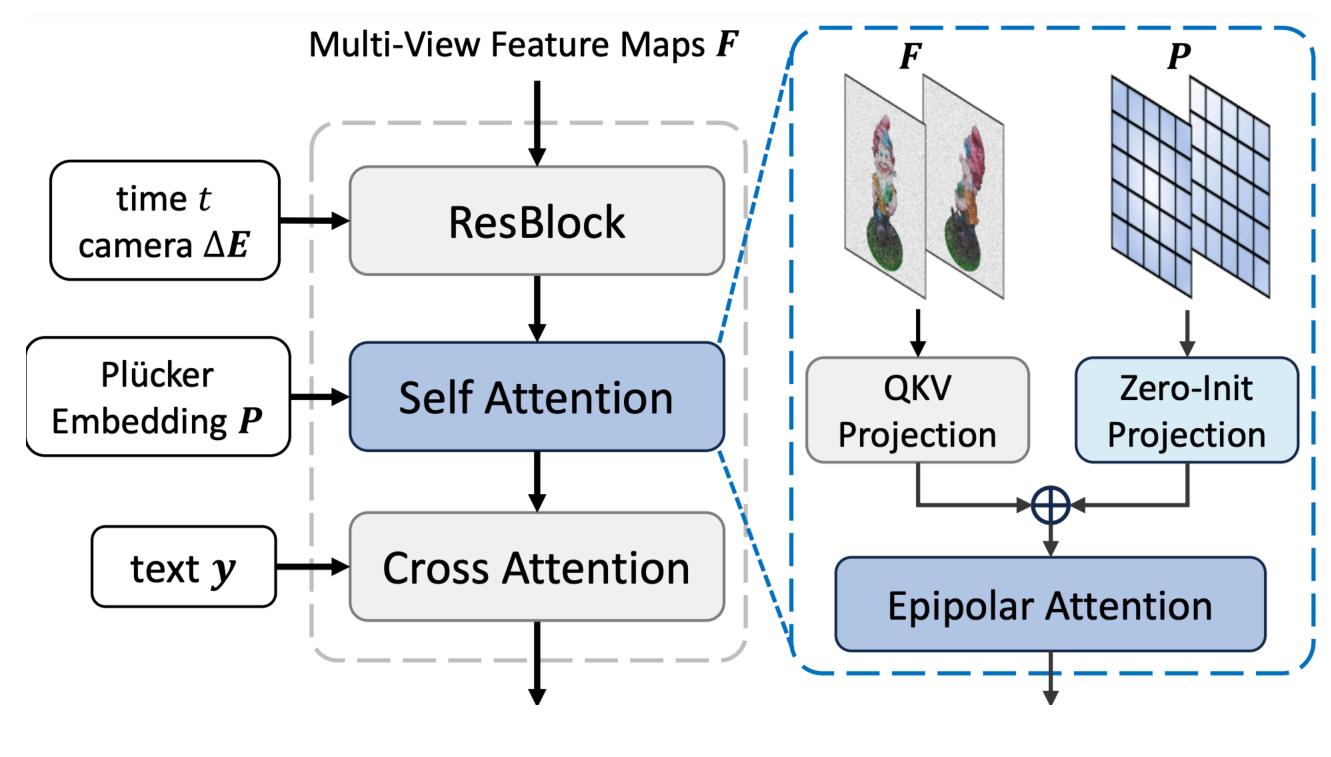


Plucker Coordinates



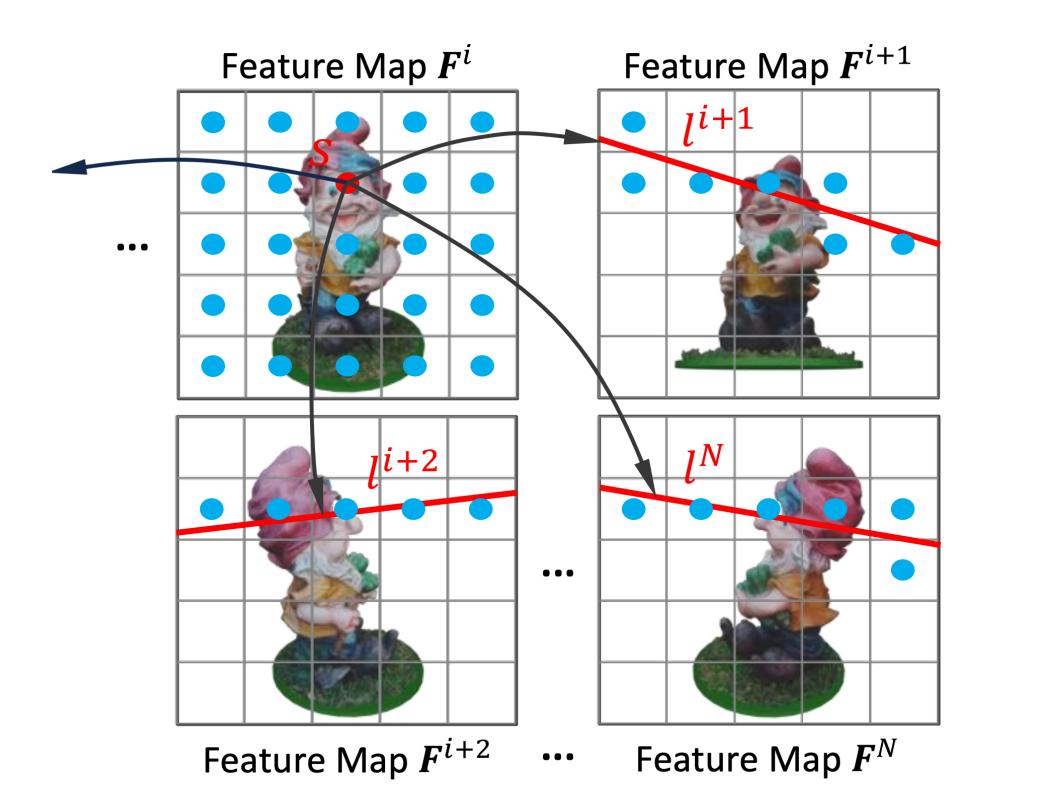
Positional Encoding

SPAD: Overall Modifications.

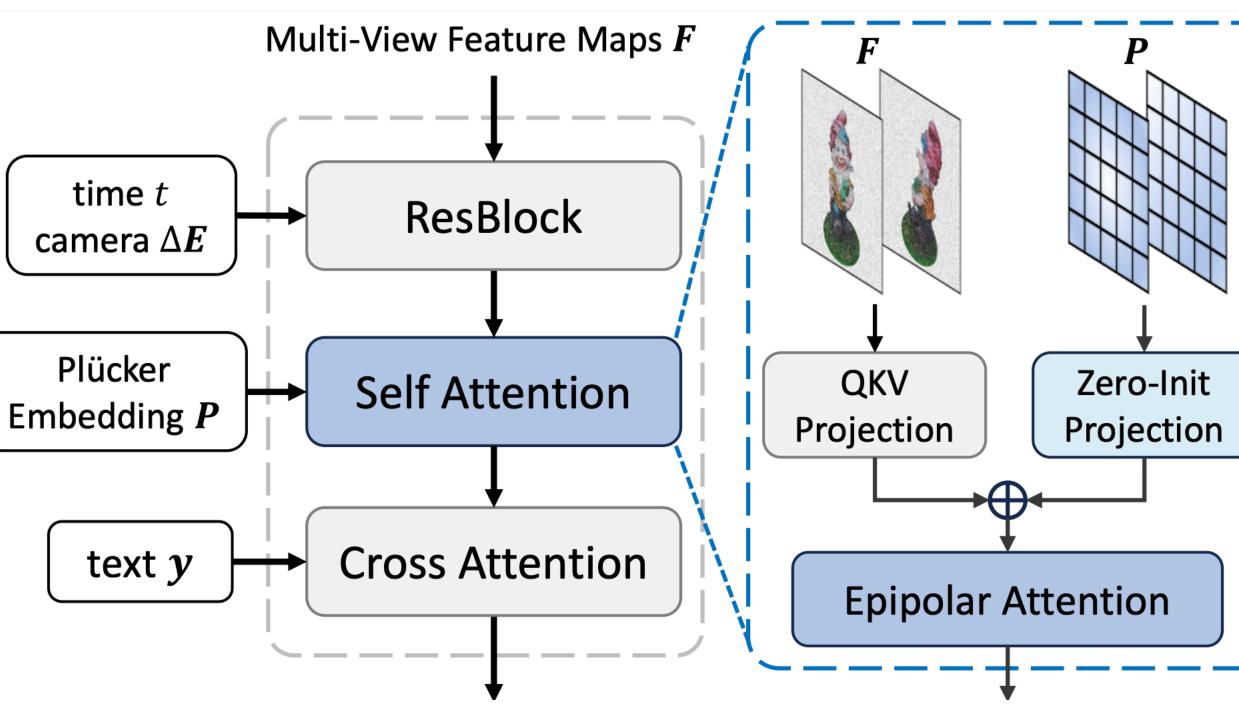


1. Replaced self-attention mask with epipolar mask 2. Insert plucker coordinates via zero-initialized MLP.

SPAD — Spatially Aware Multiview Diffuser



Epipolar Attention



UNet Attention Modification

SPAD: Training Details.

- Training

 - Effective batch-size ~ 1700 samples.
- Data
 - and comment count.

4-view models on 16-32 H100 GPUs for 100K steps.

• Quality >> Quantity (finetuning) — trained on 25% of Objaverse (200K) assets filtered with the most like, view,

SPAD outperforms MVDream / SyncDreamer — on view quality and text-to-view alignment.*

Method

IS ↑

CLIP-score \uparrow

SPAD outperforms MVDream / SyncDreamer — on view quality and text-to-view alignment.*

Method

MVDream (v2.1) [†] [72]

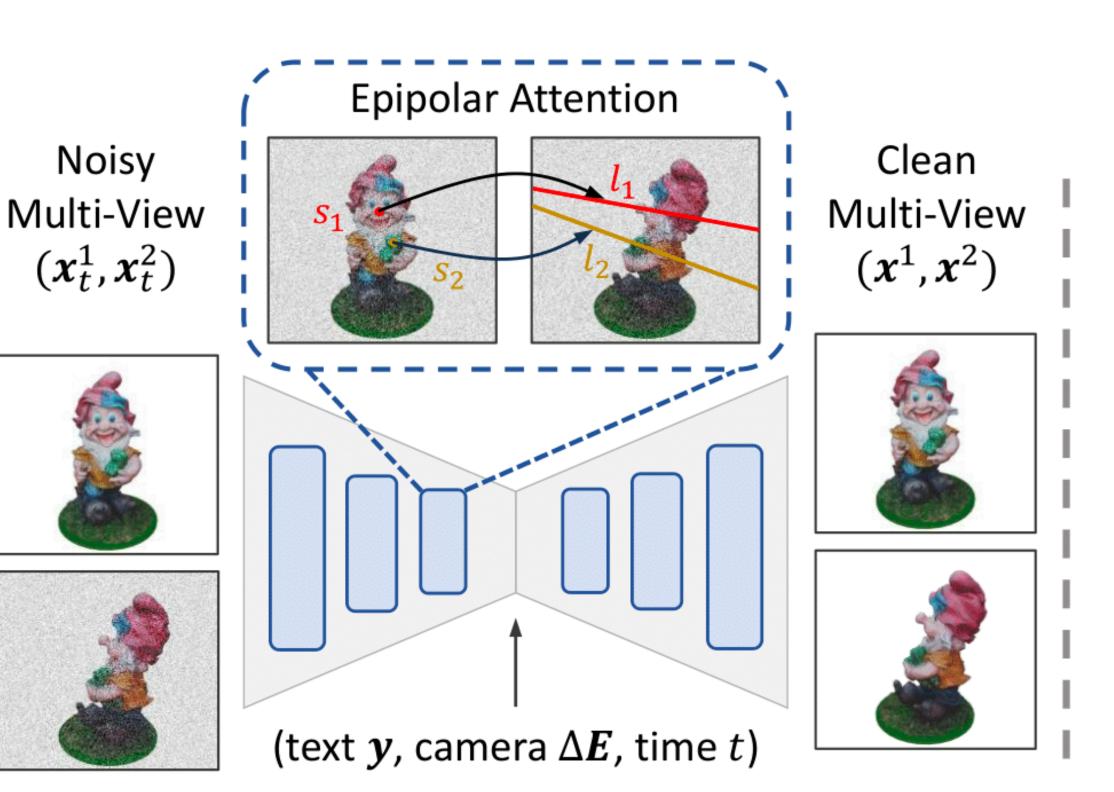
MVDream (v1.5) [†] [72] SyncDreamer [‡] [46]

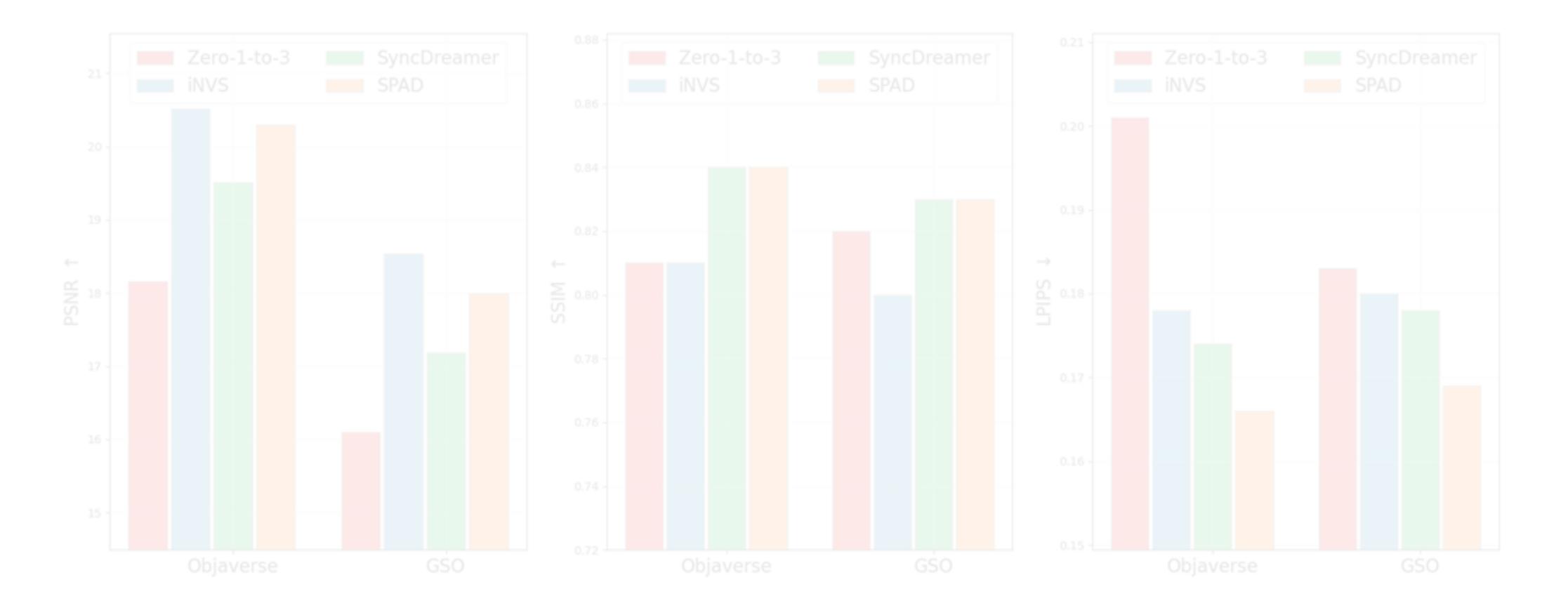
Vanilla MV-DM SPAD (**Ours**)

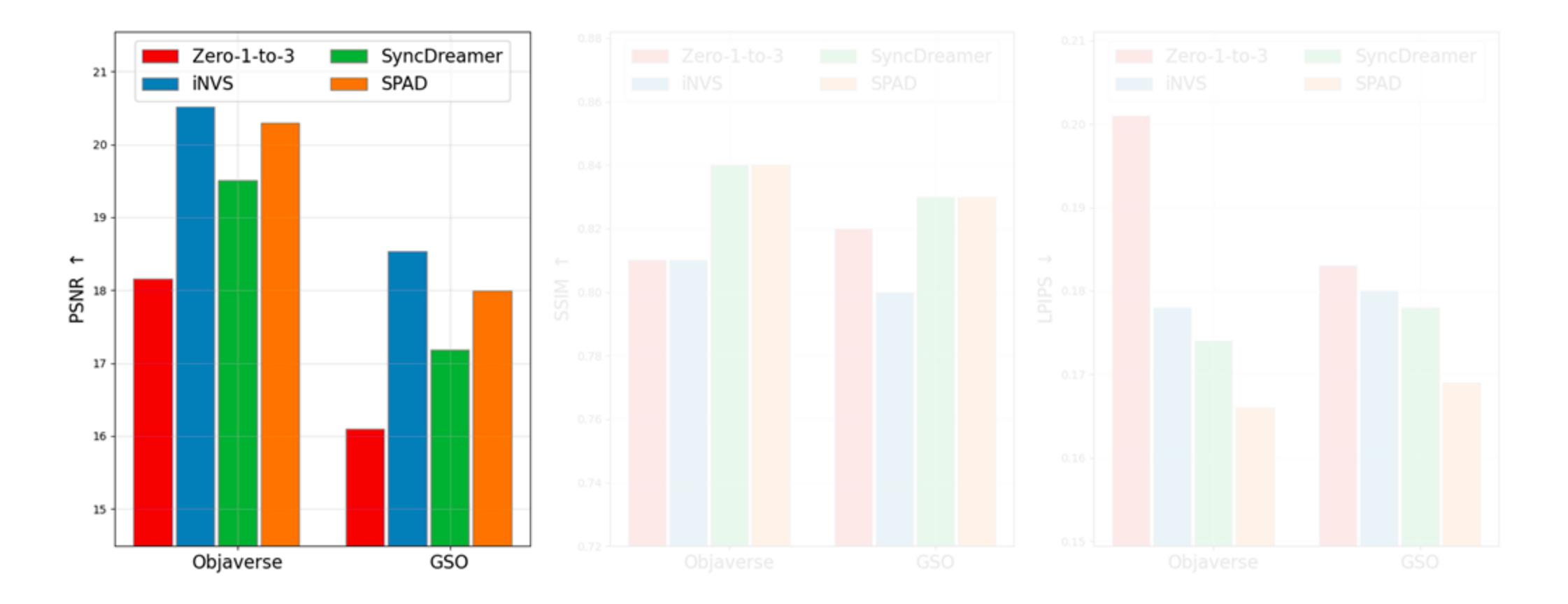
*When using the same base model SD1.5

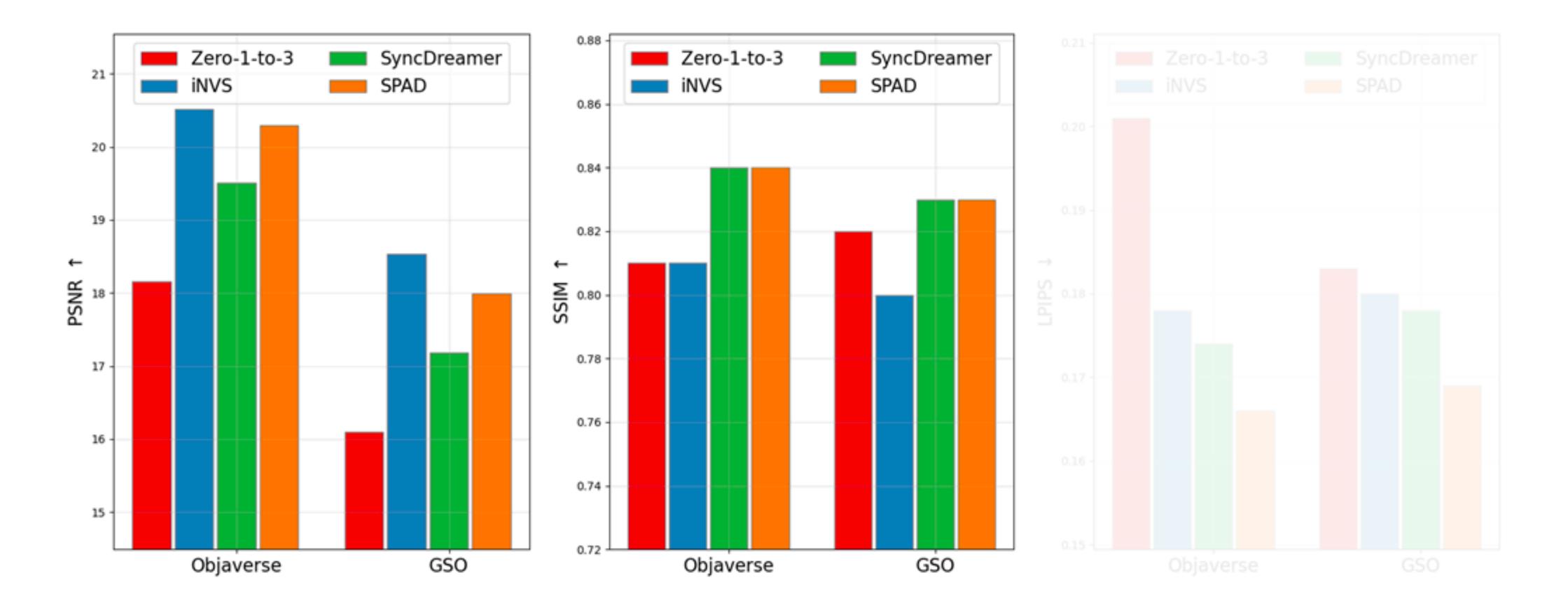
IS ↑	CLIP-score ↑
13.36±0.87	30.22±3.83
9.72±0.43	$28.55{\pm}4.05$
11.69±0.24	$27.76{\pm}4.84$
11.04±0.81	28.52±3.69
11.18±0.97	29.87±3.33

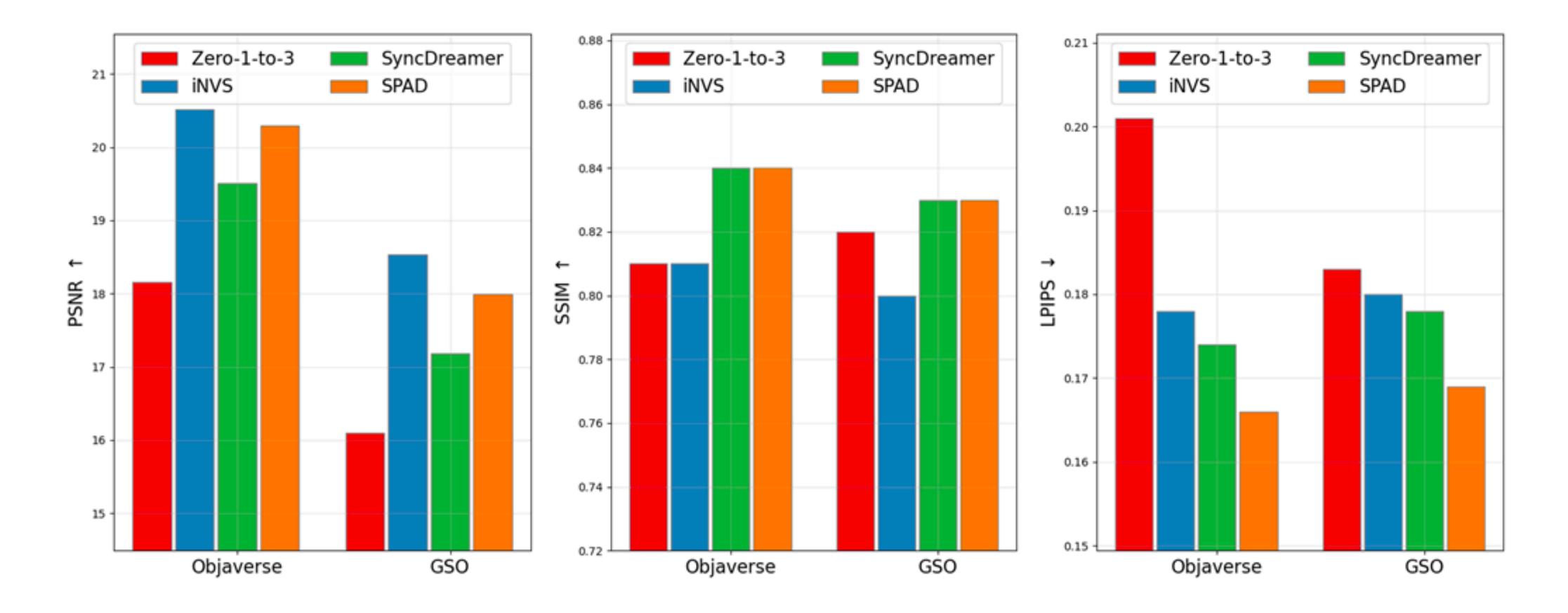
We can **simply freeze one of the views (to input view)** to create a Image-to-Views (NVS) model.











SPAD: Qualitative Results (Text-to-Views)

A DSLR photo of a pair of tan cowboy boots, studio lighting, product photography

A wooden chair

A cute steampunk elephant

SPAD: Qualitative Results (Text-to-Views)

A knight's armored metal helmet with gold trim and holes

A small robot with a glass container on its head, metal legs, and a glass top

F-15 Eagle, F-16 Fighter Jet, and F/A-18F Super Hornet aircraft

SPAD: Qualitative Results (Text-to-Views)

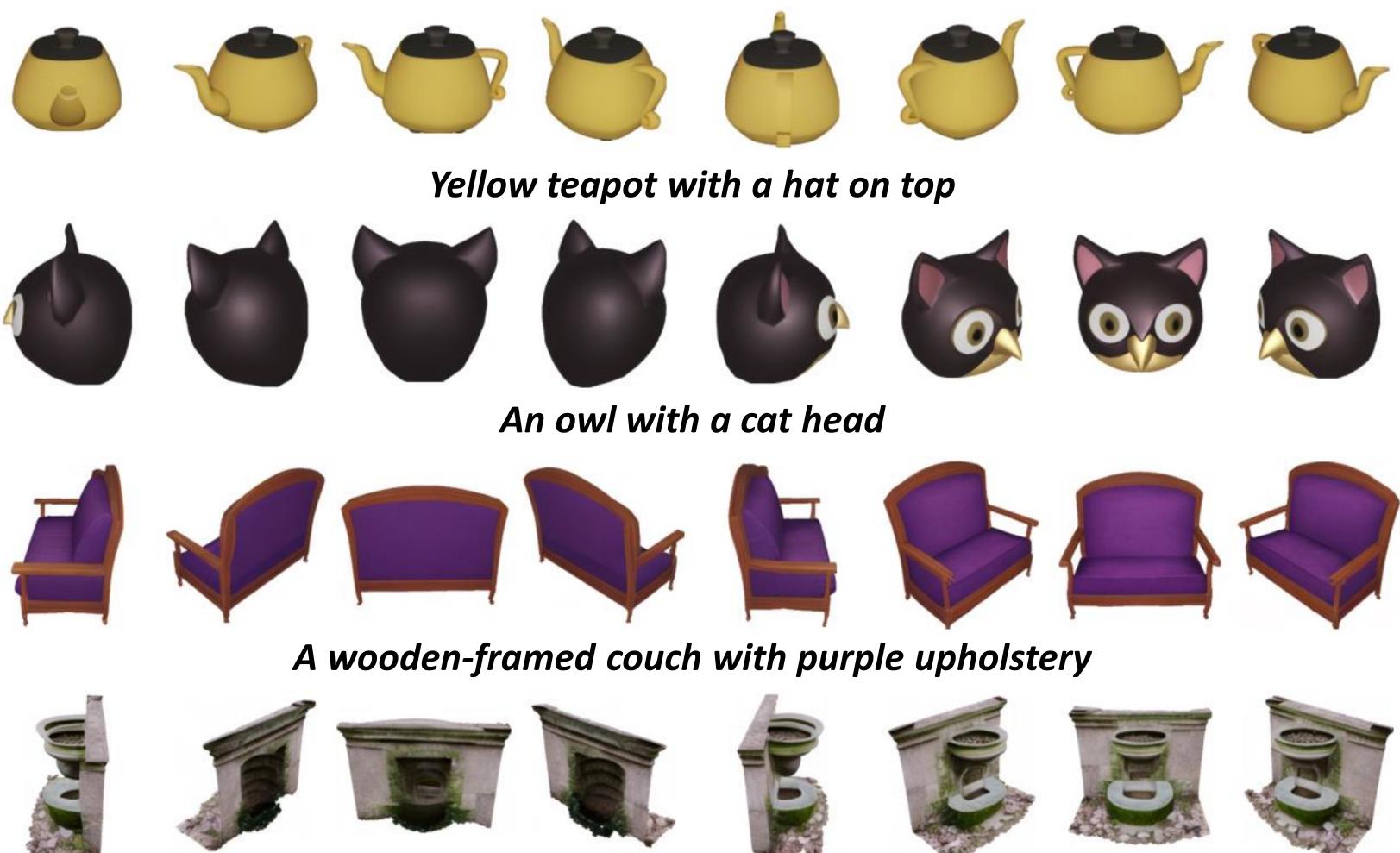
A medieval shield with a cross and wooden handle

A black futuristic space helmet with reflective surface

A small biplane flying in the air

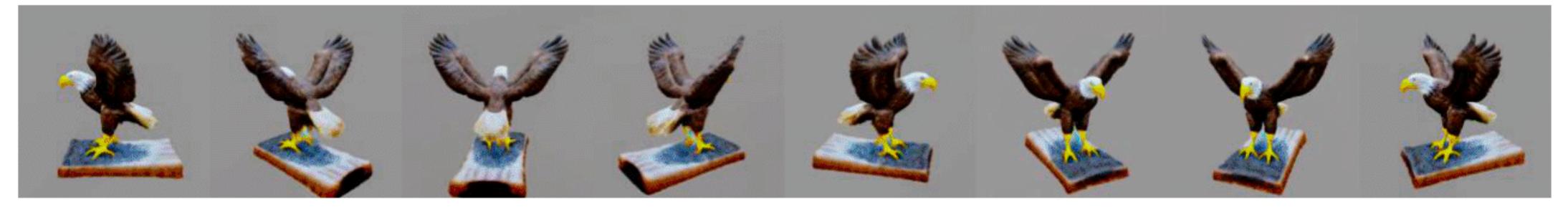
A flying red dragon

SPAD: Qualitative Results (Text-to-Views)



A small stone fountain and cistern with leaves, accompanied by a stone pillar, wall, and old building

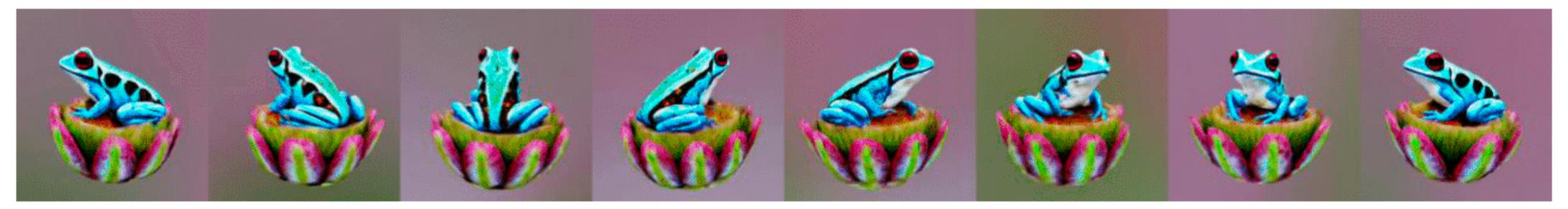
SPAD: Text-to-3D Results (Multi-view SDS)



A bald eagle carved out of wood

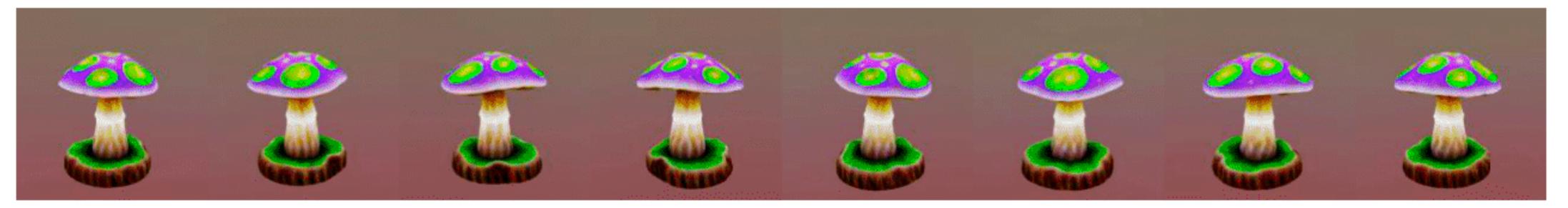


A bichon frise wearing academic regalia

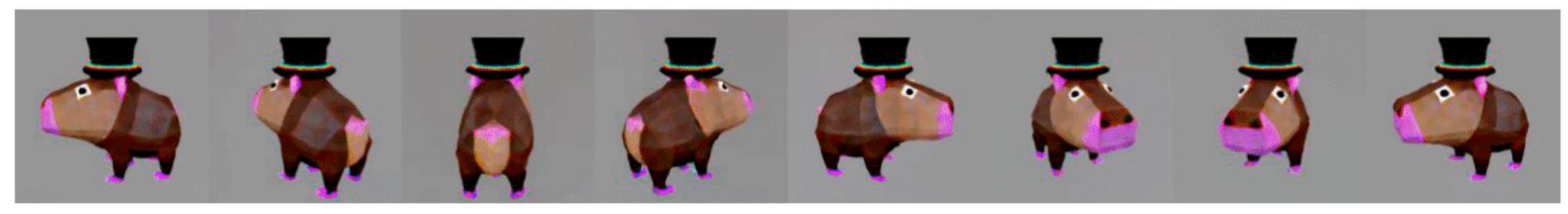


A blue poison-dart frog sitting on a water lily

SPAD: Text-to-3D Results (Multi-view SDS)



A brightly colored mushroom growing on a log



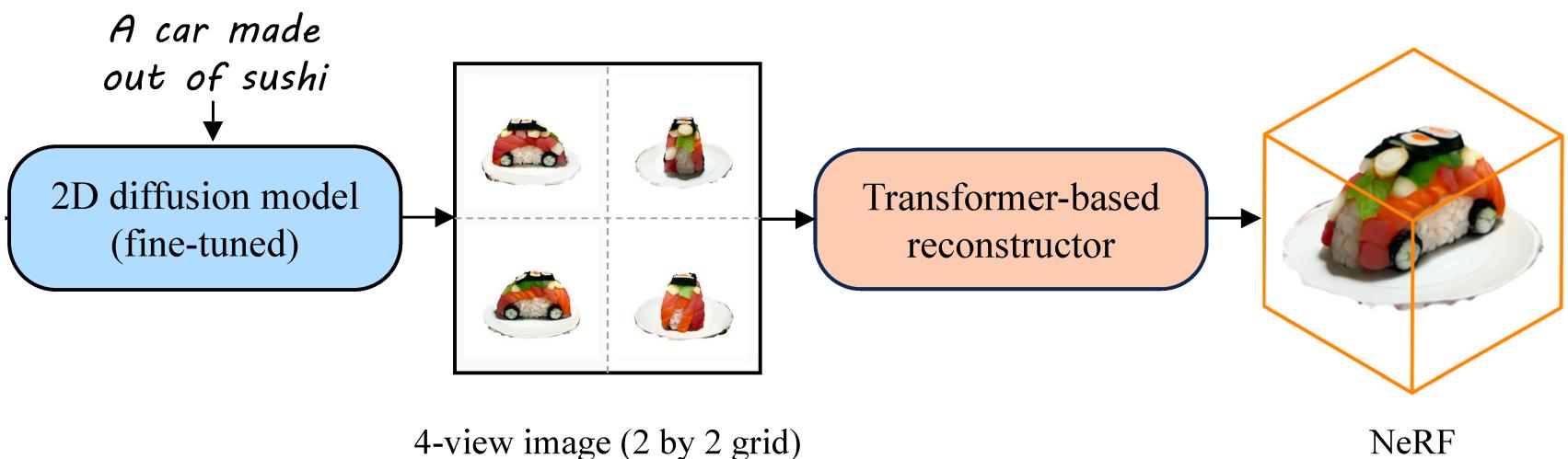
A capybara wearing a top hat, low poly

A beautiful dress made out of garbage bags, on a mannequin. Studio lighting, high quality, high resolution

SPAD: Text-to-3D Results (Multi-view SDS)

SPAD: Text-to-3D Results (Views-to-NeRF)

We push the views generated by SPAD into a transformerbased decoder that generates a NeRF (triplane) in a single forward pass.

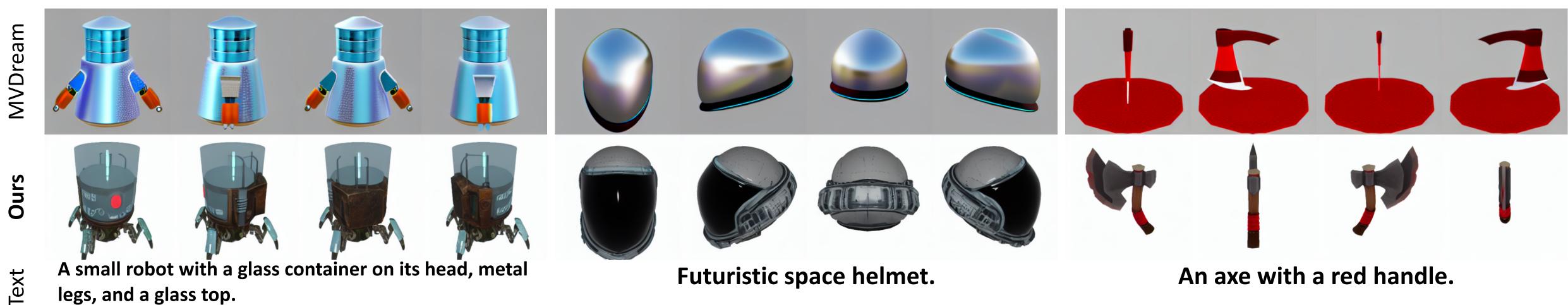


Instant3D: Fast Text-to-3D with Sparse-View Generation and Large Reconstruction Model [Jiahao Li, et al.]

SPAD: Text-to-3D Results (Views-to-NeRF)

SPAD: Text-to-3D Results (Views-to-NeRF)

SPAD: Comparison to MVDream



SPAD: Comparison to Zero123

SPAD: Close views in single inference



Thanks for listening.

Webpage: https://yashkant.github.io/spad

Yash Kant¹, Ziyi Wu¹, Michael Vasilkovsky², Guocheng Qian^{2,3}, Jian Ren², Riza Alp Guler², Bernard Ghanem³, *Sergey Tulyakov², *Igor Gilitschenski^{1,} *Aliaksandr Siarohin²

