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We present Pippo, a generative model capable of producing 1K resolution dense turnaround videos
of a person from a single casually clicked photo. Pippo is a multi-view diffusion transformer and
does not require any additional inputs — e.g., a fitted parametric model or camera parameters of
the input image. We pre-train Pippo on 3B human images without captions, and conduct multi-view
mid-training and post-training on studio captured humans. During mid-training, to quickly absorb
the studio dataset, we denoise several (upto 48) views at low-resolution, and encode target cameras
coarsely using a shallow MLP. During post-training, we denoise fewer views at high-resolution and use
pixel-aligned controls (e.g., Spatial anchor and Plucker rays) to enable 3D consistent generations. At
inference, we propose an attention biasing technique that allows Pippo to simultaneously generate
greater than 5× as many views as seen during training. Finally, we also introduce an improved metric
to evaluate 3D consistency of multi-view generations, and show that Pippo outperforms existing works
on multi-view human generation from a single image.

1 Introduction

Creating photorealistic human representations with the ability to control viewpoints has numerous applications
in entertainment, healthcare, fashion and social media. Building such representations, first and foremost,
requires high-quality multi-view studio data [3, 34], which is costly to acquire. This significantly limits the
scalability in terms of the number identities for high-quality studio data [34, 49, 94]. In contrast, large-scale,
unstructured, and diverse human images and videos are available online. However, the raw data of such
in-the-wild images does not offer ground-truth 3D or multi-view representations of humans.

In this work, we present a novel approach leveraging the best of two worlds: generalizability from in-the-wild
unstructured images, and fidelity and view-controllability from studio capture data. Specifically, our model
Pippo is a diffusion transformer, which can generate several 1K resolution multi-view consistent images jointly
during inference. Pippo takes as input a single image of an individual, camera poses of the target viewpoints
to be generated. Since the scale and placement of the subject is ambiguous from a single image, Pippo uses a
Spatial Anchor which roughly specifies the location and orientation of the subject in 3D space. Our model
does not rely on additional conditioning such as body priors or camera parameters of the input images, to
scale our training pipeline to in-the-wild data and support unconstrained inputs at test time.

We employ a multi-stage training recipe to train Pippo. First, we pre-train the model for latent-to-image
generation task, similar to [61], on a large human-centric dataset of in-the-wild images. Next, in Mid-training
stage, we jointly generate multiple consistent images of the subject, conditioned on target viewpoints and a
single input image using high-quality studio dataset. Finally, in Post-training stage, the model is provided
with a minimal placement signal - spatial anchor - encoding rough head orientation - which further improves
3D consistency. Our architecture is also carefully tailored to the conditional multi-view generation - we
propose several simple but effective modifications to the basic DiT architecture, including self-attention-based
conditioning, lightweight spatial controls and camera conditioning with Plücker coordinates.

During inference, our goal is to produce smooth turnaround videos, which requires generating up to five times
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Figure 1 Pippo generates high-resolution, multi-view, studio-quality images from a single photo. In each sample, the left-most
image is the input, followed by novel generated views of unseen subjects. First and second rows show generations
from Full-body and Face-only photos captured in-the-wild using a mobile phone. Third row shows generation from a
Head-only studio image. Last row illustrates Pippo’s capability to faithfully blend observed and generated content,
alongside the corresponding ground truth.

more views than were present during training. However, we observe that simply increasing the number of
views leads to a drop in quality of the generated content. Our investigation reveals that this drop is due
to heightened entropy in the attention heads as the number of views increases. To address this problem,
inspired by previous research in super-resolution [35], we introduce an attention biasing approach to control
and reduce entropy growth within multi-view models.

For evaluating such a multi-view diffusion model, 3D consistency is a critical metric for understanding the
geometric correctness of the generation. For generation task in an ill-posed setup (e.g., a single image input),
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Figure 2 Pipeline overview. This is an illustration of how we train our model. (Left) we use data from a studio capture
and train our multi-view diffusion model (right). We condition on a full reference photo and a cropped face, as well
as the target view cameras and 2D projected spatial anchor indicating head position and orientation. Our diffusion
model also takes in noisy target views and a timestep in order to predict the denoised views (top). In practice, we
apply a segmentation mask around the person.

there may be multiple possibilities that are equally plausible. Existing multi-view generation methods typically
report reconstruction metrics (i.e., PSNR, SSIM and LPIPS) [22] or FID [47], which either (1) penalize any
new content that is actually 3D consistent or (2) are unable to measure the 3D consistency of the generation.
To address this problem, we design a metric measuring 3D consistency: we compute 2D keypoint matches
with an off-the-shelf method [66], triangulate them, and then reproject back into the other views to measure
the reprojection error in pixels. Some generation methods measure reprojection errors [20] from SfM [67]
or epipolar distance [51, 99], but our metric uses camera pose as input and is more precise than measuring
distance to a epipolar line. We show our metric helps to quantify our results, finding that our method is
favorable compared with existing approaches and other baseline methods.

To summarize, we make the following contributions:

• a generative model capable of generating high-resolution and multi-view consistent humans from a single
image and its effective training strategy.

• a diffusion transformer architecture designed to enhance multi-view generation and viewpoint control.

• an attention biasing technique to enable generating >5x more views at inference compared to training.

• a novel 3D consistency metric to accurately measure the level of 3D consistency in generative tasks.

2 RelatedWork

We review multi-view human datasets and generative models for human synthesis, categorizing methods by
their data requirements and prior constraints—such as parametric human models or explicit 3D structures. In
this work, we minimize reliance on complex priors by training the model on large amounts of human-centric
data and impose minimal camera and spatial controls.

Multi-viewHumanDatasets. While many large 2D human datasets exist [15, 46, 69], 3d captures of people
(i.e., captures using dozens of views at a time) are still relatively rare, since they are expensive to collect and
are thus mostly obtained in specialized research labs. Nevertheless, this kind of data has recently become
more common, going from hundreds to thousands of publicly-available captures. For face-only captures, a few
datasets [49, 53, 97, 98, 100] provide up to 600 subjects captured from over 60 views each, while for full-body
captures, 4D-Dress [86] provides 32 subjects with 2 outfits each, and detailed annotations for their garments,
while DNA-rendering [11] provides 500 subjects from 60 views. MVHumanNet [94] stands apart by providing
4,500 people captured from 48 views in and over 9,000 sets of clothing, outpacing other datasets by an order
of magnitude in terms of people diversity. We use internal multi-view data of ∼1000 identities with dense
(∼160) camera setup, but we expect our model to produce reasonable results with publicly-available captures.
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Generating Novel Poses and Expressions. Although different from our task, this related work builds 3D
animatable models of people and faces. These methods use neural radiance fields [77, 78, 90], or 3d
Gaussians [40, 58, 89, 105], using canonical “T”-poses and a corresponding forward and backward mapping
to model local appearance changes. Many of these methods, however, rely on accurate human shape and
pose estimation, and only achieve high photorealism for personalized models from studio captures. Relatedly,
a family of methods focus on generating animatable faces from a single image by disentangling viewpoints
and expressions from large collections of 2d portraits [17, 18, 38, 54, 96, 102], allowing photorealistic realtime
reenactment, while being limited to faces and small viewpoint variations. Unlike these methods, we complete
missing parts of a person given either one or a few partial views. We do not repose the person or animate the
faces but can instead recover entirely missing views, which is orthogonal to these methods. Moreover, our
approach addresses both full-body and facial reconstruction, rather than specializing in either domain.

Generations with Explicit 3D Structures. Similar to early methods that extracted 3d representations from
2d models via score distillation [9, 14, 45, 57, 60, 81, 87], 3d representations of human appearance have
been extracted from GANs by co-training a neural renderer from learned TriPlane [7] or HexPlane [1, 43]
latent spaces. Others train generative models that operate directly in 3D space with diffusion or GAN
objectives [21, 50, 79, 85, 91, 93] or regression models to directly predict 3D representations [63, 64, 70].
While these methods produce 3d consistent faces by design, their quality is limited by the relatively small
amounts of 3d training data and/or the limitations of their respective 3d representations. In contrast, we
focus on generating 3d-consistent 2d images and thus avoid the downsides of explicit 3d modelling.

Generations with 2D Models. Another option is to model viewpoint changes in 2d, without an underlying
3d representation [47], sometimes modelling either photometric [36] or epipolar [33] constraints explicitly.
DiffPortrait3D [24] is a portrait-generation method that falls roughly within this category, by fine-tuning a 2d
diffusion model for 3d-aware face generation using ControlNet-style [103] conditioning for viewpoint control,
as well as cross-view attention [25] and initialization from a 3d-consistent GAN [7]. Other methods are more
general and not specific to humans, focusing on single-view to 3D generation [22, 47, 65, 71, 72, 80, 95]. In
addition to these single-view methods, video models have been fine-tuned for camera control [27, 88].

3 Method

We train our models following a three-stage strategy:

• Image-only Pre-training (P1). We pretrain on a large-scale human-centric dataset with image conditioning.

• MultiviewMid-training (M2). We train models at a low-resolution of 128× 128 to denoise 48 target views
with coarse camera control (no pixel-aligned spatial control).

• Multiview Post-training (P3). We train at a high-resolution of 1024× 1024 to denoise 1− 3 target views
with spatial control injected via ControlMLP layers.

We denote the training stage and resolution of any given model as {stage}@{resolution}. For instance,
M2@128 represents a mid-trained model at 128 resolution.

3.1 BaseModel

Architecture. We adopt a DiT-like [55] architecture with scale, shift, and gate modulation for timestep
conditioning inspired by Stable Diffusion 3 [19] and Flux [41]. We simplify the architecture by employing
MLP and attention in parallel [101], and removing second LayerNorm after attention layers. We use VAE for
training in latent space with 8x spatial compression, and patchify latent images via a linear layer and patch
size of 2. We use fixed sinusoidal positional encoding during training. We provide more details in appendix A,
and the exact design of our DiT block in Fig. 3.

Image-only Pre-training. During pre-training, the model learns to denoise an image conditioned on its
corresponding image embedding from DINOv2 [12, 52], this is similar in principle to the image decoder of
DALL-E 2 [61]. We project both embeddings to the model dimension using with a linear layer to create a
joint conditioning. Importantly, our pretraining setup does not require any annotations or captions for the
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images, and is well-aligned with our downstream objective of generating consistent multiview images given a
single reference image as input.

Formally, given an image y ∈ RH×W×C , and the joint conditioning as eimg ∈ RN×D. We pre-train our
diffusion model ϵθ with the following objective:

LDM = ||ϵt − ϵθ(y
t, eimg, t)||2 (1)

Where t ∈ [0, T ] is diffusion timestep, ϵt ∼ N (0, I) is the noise added at the given timestep. We use the
DDPM [31, 76] formulation to define discrete timesteps and set T = 1000. We first pretrain our model at
256× 256 and then at 512× 512 on a large corpus of human-centric images. Exact training details can be
found in appendix B.

3.2 MultiviewModel

Our goal is to generate many high resolution and unseen novel viewpoints of a human subject (akin to a
studio capture) given a single input image.

Input Reference. We denote the input image as xref and corresponding face crop as xface. The face crop is
obtained using FaceNet [68] and resized to the same size as input image, such that: xface,xref ∈ RH×W×C .

Target Cameras. We denote the target viewpoints to be synthesized using distinct cameras (intrinsics and
extrinsics), represented as c1:N . Each camera is used to generate its Plücker coordinates Pi ∈ RH×W×6.

Target Spatial Anchor. In addition to target cameras, we provide an oriented 3D point denoted as ai = [Ri|ti],
which roughly defines the center of the subject’s head, as well as their gaze direction. We show an example of
our Spatial Anchor in Fig. 14 in the studio on the left. This anchor is color-coded and projected into a 2D
image, which is used as conditioning for our target view generations. During inference, the Spatial Anchor
can be placed at any given point that lies within the field-of-view of the target cameras.

Multiview DiffusionModel. Given the above inputs, we train a multiview diffusion model ϵθ to jointly denoise
all the target views y1:N ∈ RN×H×W×C with the objective:

LDM = ||ϵt − ϵθ(y
t
1:N , c1:N ,xref,xface, t)||2 (2)

where yt
1:N are noisy target images. We condition the base model on the provided reference image and its face

crop by concatenating their patchified latent tokens with the noisy input latent tokens to the model. This is
shown in Fig. 14

Mid-training. In mid-training stage, we want to train a strong multiview model that can denoise several
images together, and absorb the dataset quickly at a lower resolution. During this phase, we do not use any
pixel-aligned spatial control such as Plücker or Spatial Anchor. We use an MLP to encode the flattened
16-dimensional target camera intrinsics and extrinsics into a single token . We fuse this camera token into
each noisy latent token (for the corresponding view) as positional encoding, which makes our multiview model
3D-aware of the target viewpoints. We mid-train our model at 128× 128 resolution to jointly denoise 24 views.

Post-training. In the post-training stage, our objective is to create a high-resolution model which is 3D-
consistent starting with a low-resolution and a 3D-aware (but not consistent) model. For this, we design
a lightweight ControlNet [103]-inspired module, which takes as input the pixel-aligned Plücker and Spatial
Anchor controls, and the denoising timestep to create a separate modulation signal for the multiview model.
We name this module ControlMLP, as it uses a single MLP to generate scale-and-shift modulated control
for each multiview-DiT block as shown in Fig. 3. Each layer of ControlMLP is zero-initialized at the start.
We find that the Post-training phase is crucial in reducing flicker and 3D inconsistencies in generations. We
post-train models at 512 × 512 and 1024 × 1024 resolutions to jointly denoise 10 and 2 views respectively.
Increasing the number of views further lead to GPU out-of-memory issues.

Encoding Plücker and Spatial Anchor. We notice that the relative differences between neighboring pixels in
Plücker coordinates are tiny. To amplify these differences better, we use a SIREN [74] layer to first process
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Figure 3 DiT and ControlMLP Block. Our DiT block (left) loosely follows [62], with a AdaIn-based timestep modulation.
We apply attention and MLP blocks in parallel [13], and jointly apply self-attention to the noisy generated and identity
conditioning tokens. ControlMLP block (right) is used to provide lightweight spatially-aligned conditioning - Plücker
and Spatial Anchor.

the 6D grid into a 32D feature grid. Then, we downsample it by 8x to match the size of latent tokens and
feed it as input to the ControlMLP. In addition, use the Spatial Anchor to fix the position and orientation of
the subject’s head in 3D. We only use the Spatial Anchor for generations, and not for the input reference
view. We encode the Spatial Anchor image into the latent space of our model via VAE, and concatenate it
with Plücker input and pass it through an MLP to create the modulation signal at each layer.

3.3 Understanding and Improving Spatial Control

This section presents our design choices and examines alternative approaches for injecting pixel-aligned spatial
controls during Post-training stage. We demonstrate the effectiveness of spatial control through a focused
overfitting experiment with quantitative evaluations in Tab. 1.

Scene Overfitting Task. We use 160 frames from a fixed 3D scene of a given subject and timestamp, split into
100 training and 60 validation views. We overfit our mid-trained model to the training views while testing
various spatial control methods, training only the control modules while keeping other weights frozen. After
overfitting for 10K iterations, we evaluate the model on validation views for novel view synthesis. Strong
generalization to validation viewpoints indicates effective spatial control and appropriate camera viewpoint
sensitivity. Through this task, we evaluate different spatial control injection methods in Tab. 1, starting with
simple to advanced modulation designs.

# Method (M2@128) PSNRval ↑ PSNRtrain ↑

1. Mid-trained (No Overfitting) 19.23 19.70

2. + Camera (w/ MLP) [47, 73] 17.95-1.28 19.92+0.22

3. + Plücker (w/ MLP) [8, 27, 37, 75] 18.89-0.34 20.74+1.04

4. + ControlMLP 19.45+0.22 29.36+9.66

5. + SIREN 20.13+0.90 30.19+10.49

6. + Spatial Anchor (Ours) 22.60+3.37 30.49+10.79

Table 1 Evaluating and Designing Spatial Controls (Sec. 3.3). We overfit our multi-view model for 10K iterations on 100
views of a single scene from our Head-only dataset, and evaluate on 60 novel views of this scene by only varying the
spatial controls (camera and Spatial Anchor). We use this setup to test the modulation strength of different spatial
controls. Subscript values green/red show deviations from Row 1.

• No overfitting (Row 1). The Mid-trained model without scene-specific overfitting achieves comparable
PSNR of 19.2 and 19.7 on train and validation views respectively. We treat this setup as baseline to
improve over.
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• Encoding CamerawithMLP (Row 2). We encode camera using an MLP similar to prior works [47, 73] and
our Mid-training stage (Sec. 3.2). After overfitting, the model achieves slightly better PSNR on training
views as expected, however the validation PSNR drops by 1.28 points to 17.95. This suggests that an
MLP does not provide enough modulation for camera control.

• Plücker as Positional Encoding (Row 3). In this setup, we use downsampled and patchified Plücker
coordinates processed through MLP to create positional encoding, which is added to the noisy latent
tokens. This setup is inspired from prior works [4, 8, 27, 37, 75], and it further improves the validation
PSNR compared to MLP at 18.89, but lags behind the non-overfitted baseline.

• Plücker with ControlMLP and SIREN (Row4, 5). Here, we use our ControlMLP module to inject spatial
control at each multiview-DiT block output. Moreover, encoding Plücker coordinate with a SIREN [74]
amplifies the relative differences between neighboring pixels (Sec. 3.2). This setup achieves PSNR of
20.13 with an improvement of 0.9 over baseline.

• Adding Spatial Anchor (Row 6). Finally using the Spatial Anchor gives validation PSNR of 22.6 (gain
of 3.3 points over baseline) and enables strong spatial control. Thus, we adopt this configuration for
Post-training stage.

3.4 Handling Varying Number of Views at Inference

As discussed in Sec. 3.2, during training we jointly denoise a fixed number of views. Specifically, 24 views
for mid-training at 128× 128 , and 2 or 12 views for post-training at resolutions 512× 512 and 1024× 1024
respectively. This choice is largely motivated to avoid GPU out-of-memory errors during training. However,
during inference, we wish to scale the number of views much further to generate smooth turnaround videos.
This is feasible because we can run inference at half precision (using bfloat16) and do not need the backprop
computation graph to be stored.

We find that simply scaling the number of views (or tokens) during inference beyond 2x of the number of views
during training leads to blurry and degraded generations. We find these degradations to be most significant in
regions unspecified in the input, for example, the back of the head or ears as shown in Fig. 5. We investigate
this issue next, and introduce Attention Biasing to remedy it.
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Figure 4 Entropy vs Growth Factor (γ) for varying number of views (tokens) (Sec. 3.4). We present the entropy results
(Y-axis) from our Attention Biasing technique inspired from [35] for varying number of tokens (individual line plots),
and across different scaling growth factor γ introduced in Eq. (6) (X-axis). On X-axis, "No scaling" refers to the
default attention formulation [82] and γ = 1.0 refers previous work [35] formulation. Empirically, we find that a slightly
higher value of γ = 1.4 leads to best visuals.
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Attention Biasing. Let X ∈ RN×d denote the sequence of tokens denoised jointly, where N, d represent number
of tokens and the token dimension, respectively. In the total number of tokens in the sequence is proportional
to number of views since the VAE and Patchify jointly compress the image by 16x in height and width.
Within each DiT block, we compute the Attention(Q,K,V) = AV, where Q,K,V are query, key, value matrices
and A are attention scores computed via taking a row-wise softmax as follows:

Ai,j =
eλQiK

⊤
j∑N

j′=1 e
λQiK⊤

j′
, (3)

Where the scaling factor λ was proposed to be set to 1/
√
d by the original work [82] to stabilize the softmax

operation as d increases and avoiding biased (sharp) softmax distributions. We can quantify the sharpness of
the attention by computing its entropy. Following previous works in NLP [2, 23, 104], and in vision [35] we
define entropy of attention as:

Ent(Ai) = −
N∑
j=1

Ai,j log(Ai,j), (4)

By substituting the equation (3) in equation (4), authors of prior work [35] meticulously derive that entropy
of attention grows logarithmically with number of tokens as follows: Ent(Ai) ∝ logN . Furthermore, the
authors show that this growth in entropy can be offset during inference by growing the scaling factor λ as
follows:

λ =

√
1

d
·

√
logNi

logNt

(5)

Where Nt, Ni denote the number of tokens during training and inference respectively. For more details, please
refer to Sections 3.1 and 3.2 of the original work [35]. Empirically, we find that having a slightly faster growing
λ alleviates the degradation better. Hence, we propose a hyperparameter γ (growth factor) that is tuned
between the range [1.0, 2.0] to control the growth of λ as follows:

λours =

√
1

d
·

√
γ · logNi

logNt

(6)

We follow the above Equation (6) with our growth factor hyperparameter γ. In Fig. 4, we plot the entropy
(Y-axis) during an inference pass of Pippo across varying number of views (tokens) being denoised and
demonstrate the corresponding growth in entropy. Furthermore, we also show the attenuation in the entropy
under increasing growth factors (X-axis).

We put generated visuals before and after using the suggested attention biasing in Fig. 5. We put visuals
sweeping over more values of the growth factor in Appendix Fig. 9. Similar techniques have been explored
in LLMs for handling and generating text at longer contexts [56, 83], where the scaling factor λ mentioned
above is analogous to the inverse of the temperature scale.

Additionally, we also found that using a bump function instead of constant Classifier-free Guidance during
generation leads to fewer artifacts. We discuss this trick further in appendix B.

3.5 Enhanced 3D ConsistencyMetric

Traditionally, the 3D consistency of multiview generation models is evaluated using 2D image metrics such
as PSNR, LPIPS, and SSIM against a fixed set of ground truth images. However, this approach unfairly
penalizes models that generate plausible and 3D-consistent novel content deviating from the fixed ground
truth images. Some works try to address this by measuring SfM [20, 67] or epipolar error [51, 99], but these
methods solve for pose or are not robust since they measure against the entire epipolar line. To address these
limiations, we use our GT camera poses as input and compute Reprojection Error (RE) given our known
camera poses and predicted correspondences.

Our computation of RE involves the following steps:
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Figure 5 Generations under varying strengths of growth factor γ (Sec. 3.4). On each row we show the generated views across
vanilla attention [82] (No scaling), prior work [35] and our formulation Eq. (6). It can be seen that growth factor (γ)
greater than 1.0 is crucial to mitigate the entropy buildup. We show only 10 views per row subsampled evenly from 60
views generated at 512× 512 resolution. The model was trained to jointly denoised only 12 views (Ni = 5 ∗Nt).

1. Landmarks and Correspondence estimation. We use SuperPoint [16] to detect landmarks in the generated
images and employ SuperGlue [66] to establish pairwise correspondences between landmarks across
images.

2. Triangulation. Given the correspondences and camera parameters, we apply Triangulation based on
Direct Linear Transformation (DLT) [26] to obtain the corresponding 3D points for each landmark.

3. Reprojection and Error calculation. We reproject these 3D points onto each image and compute the RE
as the L2 distance between the original landmark and the reprojected 3D point normalized by image
resolution, and average error across all images.

This approach evaluates multiview generation models by focusing on their ability to produce 3D-consistent
results rather than adhering to a fixed ground truth. The Reprojection Error provides a valuable basis for
comparison across different methods. Furthermore, by computing RE on a set of real-world images that are
independent of our generated images, we can establish a baseline that quantifies the error due to the noisy
predictions from SuperGlue and SuperPoint rather than the quality of our generated images.

Naming Convention (RE@SG). Please note that the use of SuperPoint [16] and SuperGlue [66] estimation
modules is a particular instantiation of our metric, and these could be replaced in the future with stronger
counterparts such as MAST3R [42, 84] or domain-specific keypoint detectors such as Sapiens [39]. Thus we use
the naming convention of RE@SG to denote the Reprojection Error (RE) under SuperGlue (SG) estimation,
which could be modified accordingly in the future for different estimators.

4 Experiments

We present details of the datasets used in all training and validation stages, followed by discussion of evaluation
metrics – with particular emphasis on the 3D consistency metric and conclude with core experimental results
and ablations.

4.1 Data

Humans-3BDataset. We utilize a large proprietary dataset of approximately 3 billion human-centric in-the-wild
images for pretraining. We provide more details on data filtering and curation in appendix C.

Head and Full-body Studio Datasets. We rely on high-quality proprietary studio captures as our primary source
of data for learning 3D consistency. Our model comes in two variants: head-only and full-body, each trained
(for Mid-training and Post-training stages) on corresponding datasets. For our full-body model, we utilize a
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dataset of 861 subjects (811 train, 50 test), nearly 1000 frames per subject. For our head-only model, we use
a dataset of 1450 subjects (1400 train, 50 test), nearly 40000 frames per subject. The studio setup is similar
to [49], with two capture domes for capturing full-body and head-only high-resolution 4K images with 230
and 160 cameras.

iPhone Dataset. To evaluate real-world performance, we collect casual images of 50 test subjects in an indoor
office environment using an iPhone 13 Pro. We preprocess these images with Sapiens-2B [39] for background
segmentation before model inference. This dataset serves exclusively for evaluating our model’s performance
on in-the-wild inputs.

4.2 Evaluation Setup andMetrics

3D Consistency. Following prior works, we report standard metrics like PSNR, SSIM (×100), and LPIPS
(×100) metrics. However, these metrics unfairly penalize plausible novel views generated under incomplete
inputs. We therefore introduce the Reprojection Error metric, described in Sec. 3.5, which validates 3D
consistency without directly relying on ground truth. Our evaluation generates 4 randomly selected views
from the test split.

Identity Preservation. We use two metrics that measure identity preservation across generated views by
computing cosine distance between features extracted via FaceNet [6, 68] for face similarity; and CLIP [59]
vision encoder for full-body similarity.

Pretrained Model Evaluation. We measure the effectiveness of our pre-training strategy by reporting the
FID [28]. We use a smaller annotated 30M subset of Humans-3B for training image and text-conditioned
P1@128 models, a 30M subset of unfiltered dataset for training No Filtering P1@128, and a 1000 sample test
set from iPhone dataset.

4.3 Results

Pretraining and Data Filtering. Tab. 2 presents our pre-trained model results (Row 1) and ablations on
Human-centric data filtering and Image-conditioned pretraining (Rows 2-5). Human-centric filtering and
image-based conditioning are both critical to achieve high-quality generation. The qualitative results are
shown in appendix F.

# Method (Stage@Resolution) FID ↓

1. Pippo (P1@512) 51.164

2. Human-centric Filtering (P1@128) 75.639
3. No Filtering (P1@128) 86.838

4. Image-conditioned (P1@128) 75.639
5. Text-conditioned (P1@128) 109.720

Table 2 Pretraining and Data Filtering. We report results of the full pretrained model P1@512, and compare several
variants of P1@128 models. We report FID on iPhone dataset (1k samples).

High-resolutionMulti-view Generation. In Tab. 3, we evaluate 3D reconstruction and identity preservation for
unseen subjects from the studio datasets. We show that increasing the output resolution of generation in our
approach does not hurt 3D consistency or similarity. We put corresponding visuals in Fig. 7, Rows 2 and 3.

Generations fromCasual iPhone Photos. We present in Tab. 3 (Rows 3,6) Reprojection Error and similarity
scores for casually taken images from the iPhone dataset with 1K resolution model. In this scenario, the
standard reconstruction error metrics cannot be assessed due to missing ground truth. We find that the
reprojection error on iPhone captures remains comparable to the studio dataset – demonstrating 3D consistency.
This illustrates the generalizability of Pippo beyond the multi-view training data domain, where our pretraining
with large-scale in-the-wild human data is critical. We put corresponding visuals in Fig. 7, Row 1.

Comparisonswith External Benchmarks. In Fig. 6, we compare Pippo with individual state-of-the-art baselines
in Full-body and Head-only generation. SiTH [29] reconstructs textured human-mesh using ControlNet paired
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3DConsistency Similarity

# Split & Resolution RE@SG ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Face ↑ Body ↑

H
ea
d-
on
ly 1. Studio (128) 3.3+0.8 21.0 67.6 14.8 62.0-13.3 61.5-16.2

2. Studio (1K) 3.4+0.5 20.3 72.0 26.2 73.5-2.5 79.4-0.1

3. iPhone Face (1K) 3.0 - - - 67.6 -

Fu
ll-
bo
dy

4. Studio (128) 3.6+0.1 22.8 84.0 10.0 41.7-8.5 67.1-9.4

5. Studio (1K) 1.5+0.1 22.4 91.7 11.1 64.7-6.0 74.1-2.2

6. iPhone (1K) 1.7 - - - 58.0 68.1

Table 3 Results on Unseen Studio and iPhone data (Sec. 4.3.) We report results on Post-trained Pippo models at three
different resolutions. We report 3D metrics PSNR, SSIM, and LPIPS; as well as our proposed Reprojection Error
(RE@SG) under SuperGlue estimation which does not require ground truth (Sec. 3.5). We report 2D Face and Body
similarities. Red subscript show deviation against ground truth value.

Input DiffPortrait3D Pippo (Ours) Ground Truth Input SiTH Pippo (Ours) Ground Truth

Figure 6 Visual comparison with state-of-the-art methods. We visually compare Pippo with state-of-the-art baselines
DiffPortrait3D [24] (head-only) and SiTH [29] (full-body) generation.

with a SDF representation. Compared to SiTH, Pippo facilitates high-resolution and accurate multiview
synthesis. DiffPortrait3D [24] inverts a 3D-GAN based on a given input image. Compared to it, our model
supports greater viewpoint variability and ensures closer adherence to the input image.

Quantitative comparisons and baselines. Existing SoTA Human methods [24, 29] use explicit SMPL priors,
and thus are difficult to compare with directly. Qualitatively, we found that they cannot handle novel views
or preserve details ( Fig. 6), and hence do not quantitatively compare against them. In Pippo, we focus on
creating a strong multi-view human generator, and we benchmark four state-of-the-art multi-view diffusion
models on the iPhone full-body dataset in Tab. 4. We find that Pippo preserves identity (i.e., face and body
similarity) and 3D consistency (RE) better while also operating at a higher resolution compared to baselines.

# Method &Resolution RE@SG ↓ Face ↑ Body ↑

1. MV-Adapter [32] (768) 4.7 43.0 64.1
2. Era3D [44] (512) 4.1 38.1 64.4
3. Wonder3D [48] (256) 5.3 34.7 58.8
4. Pippo (P3@1K) 3.0 58.0 68.1

Table 4 Quantitative comparison with SoTAmulti-viewmodels. We quantitatively compare Pippo against state-of-the-art
multi-view diffusion models. We find that Pippo preserves identity (i.e., face and body similarity) and 3D consistency
(RE) better while operating at a higher resolution compared to baselines.

BenchmarkingPippoonpublicdatasets. In Tab. 5, we benchmark Pippo on the public Codec Avatar datasets [49]
to aid future comparisons. Specifically, we use Ava-256 containing 256 head-only captures and Goliath
containing 4 full-body. During evaluation, we only use subsets of these datasets that were not used for training.
We find that Pippo’s performance on these datasets is inline with its performance on internal studio datasets.
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# Dataset (P3@1K) RE@SG ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Face ↑ Body ↑

1. Ava-256 (Head-only) 3.8 20.1 68.7 26.6 72.9 76.8
2. Goliath (Full-body) 1.2 20.4 89.7 15.5 87.5 77.7

Table 5 Benchmarking Pippo on public Ava-256 and Goliath datasets. We find that Pippo’s performance on these datasets
is inline with its performance on internal studio datasets. This will aid future comparisons against Pippo.

4.4 Ablations

We examine design choices at each training stage (Sec. 3) and present our ablation results in Tab. 6.
Experiments are conducted at 128× 128 resolution on the Head-only dataset.

3DConsistency Similarity

# Method (Stage@Res.) RE@SG ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Face ↑ Body ↑

1. Pippo (P3@512) 2.7+0.7 21.7 71.7 21.5 74.1-2.0 77.4-2.4

2. Pippo Face-only (P3@512) 2.4+0.4 20.5 70.3 25.3 74.3-1.7 75.8-4.0

3. No Mid-train (P3@512) 5.6+3.6 14.5 59.5 44.2 20.4-55.6 63.4-16.4

4. Pippo (P3@128) 3.3+0.8 21.0 67.6 14.8 62.0-13.3 61.5-16.2

5. No Anchor (P3@128) 11.5+9.0 17.1 54.0 21.1 63.1-12.2 68.3-9.3

6. No Plücker (P3@128) 4.2+1.7 20.2 64.5 16.1 63.5-11.8 66.1-11.5

7. Pippo (M2@128) 3.4+0.9 19.1 61.4 17.2 60.0-15.3 62.6-15.0

8. No Pre-train (M2@128) 5.9+3.4 13.1 39.3 44.9 19.5-55.8 49.0-28.6

9. Cross-Attn (M2@128) 3.5+1.0 18.0 59.2 22.1 66.2-9.1 70.7-7.0

10. Non-frontal (M2@128) 5.8+3.3 15.2 52.4 30.1 49.2-26.1 60.7-16.9

Table 6 Ablation on design choices and training stages. We evaluate several multi-view models at 128× 128 and 512× 512
resolution at different training stages on Head-only dataset. We ablate the choice of doing Mid-training and Pre-
training, along with different spatial controls and reference conditioning methods..The training stages are labeled as
M2 (Mid-training) and P3 (Post-training), followed by @ specified resolution.

Significance of Pre-training and Mid-training. Pre-training our model on the Humans-3B dataset enables
robust generalization to novel identities, as demonstrated in Tab. 6, Row 8. Without pre-training, model
generalization deteriorates, resulting in unclear facial features. Skipping mid-training at lower resolution
impairs consistent multi-view generation, as shown in Row 2.

Importance of Frontal Input Reference. Our ablation in Tab. 6, Row 10 demonstrates that completely
randomizing the view point of an input reference image leads to overfitting to training identities. Non-frontal
views, especially rear views, have very limited information about the identity which forces the network to pick
up spurious correlations.

Importance of Self-attention. Replacing self-attention with cross-attention for reference image encoding, using
the same routing as image-conditioned pretraining from Sec. 3.1, leads to degraded performance as shown in
Tab. 6, Row 9. We observe that this setup causes the model to ignore input conditioning, generating images
that only vaguely resemble training subjects.

Role of large scaleHumans-3Bpre-training dataset. We utilized intermediate checkpoints from pre-training stage
(P1) trained on 30% and 70% of the data, and a separate checkpoint trained on 1% high-quality subset of
Humans-3B. Starting from these checkpoints, we mid-trained Pippo to denoise 4 views at 128× 128 resolution
on Full-body dataset for two days. We report their respective results in Tab. 7. We found large-scale data is
crucial for generalization to novel identities – indicated by high gains in face similarity metric.

5 Conclusion

We present Pippo, a diffusion transformer model that generates a dense set of high-resolution multi-view
consistent images of a person from a single image. Our experiments show that our multi-stage training
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# Pretrain Data (M2@128) RE@SG ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Face ↑ Body ↑

1. 30M (1% HQ) 3.8 21.3 81.8 13.3 30.6 66.2
2. 900M (30% Random) 4.0 21.6 82.0 12.1 30.6 67.2
3. 2.1B (70% Random) 3.7 21.6 82.1 12.1 37.6 67.5
4. Humans-3B (100%) 3.7 21.9 82.3 12.7 41.7 67.2

Table 7 Ablating the size of pre-training dataset on Humans-3B. We conduct Full-body mid-training with pretrained
checkpoints trained on 1%, 30%, 70%, and 100% subsets of Humans-3B dataset. We found large-scale data is crucial
for generalization to novel identities (i.e., face similarity).

strategy, which combines large-scale in-the-wild data with high-quality multi-view studio captures, enables
generalizable high-resolution multi-view synthesis. Analysis of the diffusion transformer architecture reveals
that self-attention with the reference image, Plücker coordinates with SIREN, and Spatial Anchor are all
essential for high-fidelity multi-view human generation. Pippo achieves, for the first time, consistent multi-view
human image generation at 1K resolution. We also show that our proposed 3D consistency metric enables
evaluation of 3D consistency without paired ground-truth data. One of the limitations of our approach is
the limited number of simultaneously generated views, originating from large context length and memory
constraints, which can be tackled with parallelization techniques and autoregressive generation. Extending
our approach to multi-view consistent video generation will be addressed in future work.
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Figure 7 High ResolutionMulti-viewGeneration of Unseen subjects. Pippo enables generation of high-resolution 1K images
given only a single image as input (left most in each block, separated with a dashed line). First row LHS shows
generation from mobile captured photo, while the RHS shows unseen studio subject. Second row shows mobile captured
face-only generations. Third and fourth row shows unseen studio subjects. Last two rows demonstrate simultaneous
generation of 10 novel views given unseen studio subject.
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Figure 8 Pippo can handle occluded inputs. We show Pippo’s generations given incomplete input images – such as
partially or fully occluded faces, unobserved t-shirt designs on test split of Full-body dataset. We show corresponding
ground truth separated with blue dotted line – it can be seen that Pippo faithfully follows the known content while
auto-completing unseen segments.
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Appendix

A DiT Architecture and Training

Architecture. We use a Diffusion Transfomer with 28 DiT + ControlMLP blocks (depth) in Pippo operating at
1536 dimension. The DiT blocks account for 1.3B parameters and ControlMLP blocks for 248M parameters
respectively. We use latent autoencoder which provides 8x spatial downsampling, and 4-channel latent space.
It contains 101M parameters. We find the placement of the ControlMLP block modulation in DiT to be
crucial, specifically, being placed before the scale, shift, and gate is important for the control signal to work
well.

Training Stages. We pre-train (P1@256) our model on 512 A100 GPUs for 1M iterations, with batch size of 24
per GPU and at 256× 256 resolution. 1M on base model, and 700K iterations on 512x512 resolution. During
pretraining Pippo, we use image-only conditioning via DinoV2 [52] using ViT-L/14 based models to provide
weak supervision and alignment for target generations. We mid-train our model on Full-body and Head-only
datasets at 128 × 128 resolution for nearly 100K steps, and post-train our models with spatially-aligned
conditions at 512× 512 and 1024× 1024 for nearly 50K steps. We pre-train, mid-train, and post-train for
roughly 2:1:1 weeks, respectively.

Optimizer and Hyperparameters. We use LR of 1e-4 during all stages and AdamW optimizer with beta values
set to [0.9, 0.98] and epsilon to 1e-6. We use linear warmup for initial 1000 steps starting at 1e-6. We conduct
training at full precision (float32), and run inference at half precision (bfloat16).

B DiffusionModel and Inference Settings

We use classifier-free guidance(CFG) [30] during training, with 20% dropout probability on input reference
image. We use 50 DDIM steps for sampling. During inference, we find that lower CFG scales between 3− 5
work better at higher resolution and generating viewpoints that are closer to input view, this observation
is inline with Stable Video Diffusion [5] which proposed to linearly increase CFG scale after the first frame
generation. Inference speed with Pippo depends on the resolution and number of views to be denoised; we
report few combinations in Tab. 8.

# Method (Stage@Resolution) Views Speed (sec) ↓

1. Pretrained (P1@256) 1 2.51
2. Pretrained (P1@512) 1 2.59

3. Mid-trained (M2@128) 4 6
4. Mid-trained (M2@128) 48 14

5. Post-trained (P3@512) 4 40
6. Post-trained (P3@512) 48 490

7. Post-trained (P3@1K) 4 185
8. Post-trained (P3@1K) 12 622

Table 8 Inference Speed of Pippo. We show inference speed without any optimizations (using bfloat16) against varying
resolution and number of views being generated.
Attention Biasing. To compute the entropy (shown in Fig. 4), we use the first, middle, and last blocks of
Pippo; and aggregate over all attention heads, conditional and unconditional inference passes, and DDIM
steps. In Fig. 9, we show visuals for increasing strength of the scaling growth factor (γ) when generating 60
views simultaneously at 512x512 resolution. It is evident that using this attention biasing is quite crucial in
making diffusion models generalize across many views (long context sequences). Growth factor (γ) greater
than 1.0 helps mitigate the entropy buildup; however, increasing γ beyond 1.6 leads to over-saturation artifacts
somewhat akin to ones caused by high CFG scale.

Varying Classifier-free Guidance (CFG) using a bump function. Classifier-free Guidance guidance enables a
trade-off between diversity and realism [30]; with higher values of CFG resulting in diverse generations (i.e.,
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Figure 9 Generations under varying strengths of growth factor γ (Sec. 3.4). On each row we show the generated views
across vanilla attention [82] (No scaling), prior work [35] and our formulation Eq. (6). Growth factor (γ) greater than
1.0 helps mitigate the entropy buildup, however increasing γ beyond 1.6 leads to oversaturation artifacts (somewhat
akin to high CFG scale). We show only 6 views per row subsampled evenly from 60 views generated at 512 × 512
resolution. The model was trained to jointly denoised only 12 views (Ni = 5 ∗Nt).

higher Inception Score) and lower values of CFG leading to phtorealistic generations (i.e., higher FID) In our
setup, the single image to multi-view task involves faithfully preserving known content while also hallucinating
diverse possibilities of unseen regions. The amount of known content and unknown content varies for each view
that is being generated; for example, the back of the heads are often unseen; however, central parts of the face,
such as the nose, are generally specified in the frontal input image. We can use this information to rescale the
CFG weight for each view separately. Specifically, we find that using a lower weight for regions where content
copying is required prevents saturation artifacts, whereas increasing the CFG scale of unseen regions leads to
more stable and diverse generations. Thus, we increase the CFG linearly starting from the front facing view
at 0◦ azimuth until 90◦ azimuth (side-view) where it reaches its peak value. Then we keep the CFG scale
fixed at this peak value until the azimuth reaches 270◦ (opposite side-view), and finally decrease it linearly
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back to starting value at azimuth of 360◦. This is a bump function and we find that starting with CFG scale
between [7.0, 9.0], and having a peak CFG scale between [15.0, 19.0] results in reduced artifacts and diverse
generations especially in the unseen regions. A similar trick is also used in image-to-video work of SVD [5].

Rescaling diffusion timesteps under varying resolution. Prior works [10, 19] suggest that as resolution increases
the noise scale has to be shifted to ensure same level of corruption. Based on this Stable Diffusion 3 [19]
derive a noise reweighing scheme by assuming degradation to a constant-pixel image and ensuring that the
uncertainity under degradation for each pixel stays constant. Since SD3 uses conditional flow-matching
objective and we train Pippo using the DDPM [31] objective, we cannot use their reweighing scheme directly.
Here, we provide a derivation for an equivalent reweighing scheme for DDPM objective. We can define forward
process as:

zt =
√
αtz0 +

√
1− αtϵ,

where αt is a monotonically decreasing function of t. The uncertainty in DDPM is governed by the variance
of the forward process, which depends on αt and 1− αt. Consider a constant image z0 = c1, where c ∈ R and
1 ∈ Rn. The forward process in DDPM produces:

zt =
√
αtc1+

√
1− αtϵ,

where ϵ ∼ N (0, I). The uncertainty in estimating a constant-valued image c is, where n are total number of
pixels in the image:

σ(t, n) =

√
1− αt√
αt

· 1√
n
.

To map a timestep tn at resolution n to a timestep tm at resolution m such that the uncertainty σ(tn, n) =
σ(tm,m), we solve: √

1− αtn√
αtn

· 1√
n
=

√
1− αtm√
αtm

· 1√
m
.

Rearranging, we get the resolution-dependent timestep mapping for DDPM isolates αtm as:

αtm =
αtn

m
n + αtn

(
1− m

n

) .
We use the above reweighing to rescale noise steps when training models at a higher resolution of 512× 512
and 1024× 1024 during post-training. In practice, we set m/n ratio to be slightly lower than the actual value
following SD3 [19].

C Humans-3B : Filtering and Stats

We run image metadata filtering to keep images whose short edges are at least 720 pixels and file sizes are
at least 120 KB. We run Detectron2 [92] (pose detection) to keep images containing one clearly detected
person (detection score at least 0.9 and the secondary clear person detection score is at most 0.4) with heads
at least partially visible, and the long edge of the detected bounding box is at least 300 pixels. We also use
a custom person realism classifier to drop computer-generated or computer-processed imagery. We provide
rough statistics of our curated human-centric dataset in Fig. 10. We bucket these attributes in bins along
X-axis and plot their respective sizes (normalized between 0− 1) on Y-axis.

D Visuals [Webpage and Explainer Video]

Webpage. We upload a supplementary webpage which contains 360◦ turnaround videos from our model
generated for Full-body, Head-only and Face-only settings. Additionally, we put visuals where we provide as
input a monocular video (framewise), and generate frames independently at each timestep. We find Pippo
preserves the known details while hallucinating plausible unseen parts well. We also put the visualization of
our spatial anchor and corresponding generations. See index.html for the webpage.

Explainer Video. Please see pippo-explainer.mp4.

23



750 1000 1250 1500 1750
0.00

0.06

0.12

0.18

0.24

Person Height

800 1000 1200 1400
0.0

0.2

0.4

0.6

Image Width

0.900 0.925 0.950 0.975 1.000
0.00

0.15

0.30

0.45

0.60

Person Detection Confidence

250 500 750 1000 1250
0.0

1.5

3.0

4.5

6.0

×10 2 Detected Person Width

400 800 1200 1600
0.000

0.025

0.050

0.075

0.100

Detected Person Height

0.2 0.4 0.6 0.8 1.0
0.00

0.08

0.16

0.24

0.32

Upper Body Visibility Score

0.25 0.50 0.75 1.00
0.00

0.03

0.06

0.09

0.12

Full Body Visibility Score

0.30 0.45 0.60 0.75 0.90
0.00

0.08

0.16

0.24

0.32

Image Quality Rating

Figure 10 Statistics of our curated Humans-3B dataset. We bucket these attributes in bins along X-axis and plot their
respective sizes normalized between [0, 1] on Y-axis. Filtering with these statistics enable us to retain images with
detected-person confidence and image quality.

No Filtering (P1@128)Human-Centric Filtering (P1@128) Text-Conditioned (P1@128)Pippo (P1@512)

Figure 11 Qualitiative and ablation visuals from pretrainedmodel. Consistent with quantitative evaluation, visual quality of
generated images improves with using human-centric filtering, and image-conditioned models generate samples which
are visually closer to the domain (casual iPhone captures). There is also an obvious boost in quality due to higher
resolution.

E Why the name Pippo?

Filippo Brunelleschi.

Our model is named after Filippo di ser Brunellesco di Lippo Lapi (1377 – 15 April
1446), widely recognized as Filippo Brunelleschi and affectionately known as Pippo
by Leon Battista Alberti. Brunelleschi was an Italian architect, designer, goldsmith,
and sculptor. He pioneered the application of vanishing points in artwork to achieve
accurate perspective vision. Similarly, our model employs a single 3D spatial anchor
to produce consistently improved images.

F Visuals fromPretrainedModel (P1 )

In Fig. 11, we showcase qualitative visuals related to the findings in Table 2. It
is evident that the model trained with filtered data and using an image-conditioned
objective produces high-quality human figures.
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G Frequently Asked Questions

Ablation withMissing or Inconsistent spatial anchor. Spatial Anchor acts as a placement signal for Pippo since
we do not provide it with intrinsics or extrinsics of the input image. In Fig. 12, we run inference on the
Head-only P1@512 model with missing spatial anchor, or when it is inconsistent with input head pose (rotated
downwards at the floor by 90◦). When the spatial anchor is missing, Pippo often generates an empty image
because in our training data it implies that the subject’s head is not visible in the generated view. We
find that Pippo is robust to anchor rotations; this suggests that Pippo relies on the spatial anchor only for
placement control and infers head-pose from the input image.

Input View Correct Anchor Rotated Anchor No Anchor Ground Truth

Input View Correct Anchor Rotated Anchor No Anchor Ground Truth

Figure 12 Ablation withMissing or Inconsistent Spatial Anchors. We run inference on the Head-only P1@512 model with
missing spatial anchor, or when it is inconsistent with input head pose rotated downwards towards the floor by 90◦.

Can we reconstruct Pippo outputs? Yes, we can reconstruct Pippo’s generations directly using a NeRF or
Gaussian Splatting.

Why use spatial-control in post-training only? We find that skipping pixel-aligned controls in mid-training helps
us to train faster and allows training jointly on a greater number of views. Additionally, since we mid-train at
the low resolution of 128× 128 , we find that pixel-aligned control needs to be re-injected during post-training
again.

Is Reprojection Error (RE) pairwise, and can it handle occlusions? Yes, we compute the mean Reprojection Error
over pairs of images. We divide the generated images randomly into non-overlapping pairs and compute
pairwise RE. We re-project the triangulated 3D points back to each of the two images to compute the RE. We
only use high-quality correspondence matches by setting a threshold of > 0.2 in SuperGlue, and reject image
pairs that have fewer than < 5 matches detected. This filtering helps to avoid spurious correspondences in
distant and occluded views. We will release the code for metric.

Trends in overfitting experiments (in Sec. 3.3) may change under largescale training. Empirically, we found that
the ability to generalize to novel viewpoints of a single scene under overfitting is correlated with a greater
ability to steer the camera viewpoint and place the subject precisely after post-training. For example, in Tab.
4, Row 5 we can see that removing the spatial anchor drops the 3D consistency of the post-trained model the
most and is correlated with the overfitting result in Tab. 1, Row 6. The distribution of cameras in overfitting
remains similar to that of full training. Thus, we use overfitting as a proxy to compare existing spatial control
modules cheaply.
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Input Image Generated View Ground Truth

Figure 13 Pippo can handle extreme facial expressions. We show generations where reference image comes from unseen
Head-only subjects showing extreme facial expression alongside ground truth. We put similar visuals from our Face-only
model on webpage.

Input View (Face-only) Generated Views (Top) and  Spatial Anchor (Bottom)

Figure 14 Visualizing Spatial Anchor. Spatial anchor is an oriented 3D point in space, which helps anchor the generation
by specifying a fixed headpose for generations. We put detailed discussion in Sec. 3, ablation using it in Tab. 6 and
more visuals on webpage.
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