iNVS: Repurposing Diffusion Inpainters for **Novel View Synthesis**

University of Toronto¹

Yash Kant¹, Aliaksandr Siarohin², Michael Vasilkovsky², Riza Alp Guler², Jian Ren², Sergey Tulyakov², Igor Gilitschenski¹

Snap Research²

Task: Given single image of an object, we want to generate it from novel viewpoints.

Given Image

Want Novel Views!

Task: Given single image of an object, we want to generate it from novel viewpoints.

Source

Camera

Source View

Target **Camera-1**

Target Views

- Encodes the source view using CLIP.
- Relative camera pose is encoded using dense MLP.

- Encodes the source view using CLIP.
- Relative camera pose is encoded using dense MLP.
- Trained a conditional Stable
 Diffusion to denoise novel
 views on Objaverse.

 Inefficient reuse of input pixels — sharp details (text and texture) get garbled.

Garbled Text!

Given Image

Zero-1-to-3

Ground Truth

- Inefficient reuse of input pixels — sharp details (text and texture) get garbled.
- Camera is encoded in a dense vector — coarse control.

Garbled Text!

Given Image

Zero-1-to-3

Ground Truth

Alignment Issue!

Given Image

Zero-1-to-3

- Inefficient reuse of input pixels — sharp details (text and texture) get garbled.
- Camera is encoded in a dense vector — coarse control.
- 3D consistency is not guaranteed.

Garbled Text!

Given Image

Zero-1-to-3

Ground Truth

Alignment Issue!

Given Image

Zero-1-to-3

 Hypernetwork-based approach which generates weights of an MLP conditioned on input image.

- Hypernetwork-based approach which generates weights of an MLP conditioned on input image.
- This MLP is then queried using points in 3D space to generate occupancy and colour (NeRF).

 Instability during training; since the space of possible solutions (weights) is very high dimensional.

- Instability during training; since the space of possible solutions (weights) is very high dimensional.
- Inefficient reuse of input pixels — sharp details (text and texture) get garbled.

Given Image

Generated 3D

- Instability during training; since the space of possible solutions (weights) is very high dimensional.
- Inefficient reuse of input pixels — sharp details (text and texture) get garbled.
- Suffers from janus artefacts.

Given Image

Generated 3D

iNVS: Reframing NVS as completion task

InfiniteNature [Andrew Liu, et al. ICCV, 2021]

- Inspired by video generation approaches such as InfiniteNature, we ask —
- "can we reframe novel view synthesis as a image completion task rather than generation from scratch?"

iNVS: Reframing NVS as completion task

Infinite

"can we reframe nove task rather

Inspired by video generation approaches such as as a image completion m scratch?"

InfiniteNature [Andrew Liu, et al. ICCV, 2021]

iNVS: Creating Partial Views

We reuse source image pixels to create a partial image.

Source View

iNVS: Creating Partial Views We use monocular depth [ZoeDepth] to unproject source pixels in 3D.

Source View

Depth Map

iNVS: Creating Partial Views

We re-project these 3D points back to target view using softmax-splatting and create partial target view.

Source View

Depth Map

Partial Target View

iNVS: Inpainting Partial Views for NVS

iNVS: Inpainting Partial Views for NVS

 Stable Diffusion
 Inpainter fills in newly discovered regions.

iNVS: Inpainting Partial Views for NVS

- Stable Diffusion Inpainter fills in newly discovered regions.
- We train the Inpainter on Objaverse dataset, to learn 3D completion priors.

Partial Target View

Inpainted View

iNVS: Epipolar and Pose-aware Inpainting Mask

We further constrain the inpainting to the areas occluded in source view using epipolar lines.

Source View Partial View

v Epipolar Mask *iNVS*

iNVS: Epipolar and Pose-aware Inpainting Mask

We further constrain the inpainting to the areas occluded in source view using epipolar lines.

Source View Partial View

v Epipolar Mask *iNVS*

iNVS: Epipolar and Pose-aware Inpainting Mask

Additionally, we also use a soft-valued (0,1) inpainting mask that conveys the relative angle (0,180) between source and target camera ray.

Source View Partial View

Soft Inpainting Mask

v Epipolar Mask *iNVS*

iNVS: Training Details

 We fine-tune SD Inpainter network on 96 A100 GPUs for two weeks, on ~ 20M rendered images from Objaverse.

iNVS: Training Details

- We fine-tune SD Inpainter network on 96 A100 GPUs for two weeks, on ~ 20M rendered images from Objaverse.
- Object boundary appears as early as 10% of denoising steps; hence, we sample timesteps with a bias during training.

Early Inference Steps

50%

Given Image

Given Image

Garbled Text!

Given Image

Garbled Text!

Given Image

Garbled Text!

Given Image

Baseline (Zero-1-to-3)

Text remains intact!

iNVS (Ours)

Given Image

Given Image

Given Image

Given Image

Baseline (Zero-1-to-3)

iNVS (Ours)

Given Image

Baseline (Zero-1-to-3)

iNVS (Ours)

Resolution: 256x256

Given Image

Baseline (Zero-1-to-3)

iNVS (Ours)

iNVS outperforms Zero-1-to-3 on 2/3 metrics on GSO (synthetic)

Method	PSNR 1	SSIM 1	LPIPS
iNVS	18.95	0.30	0.24
Zero-1-to-3	14.74	0.34	0.25

Google Scanned Objects

iNVS outperforms Zero-1-to-3 on 2/3 metrics on GSO (synthetic) and CO3D (real-world) datasets.

Method	PSNR 1	SSIM 1	LPIPS ↓	Method	PSNR 1	SSIM 1	LPIPS
iNVS	18.95	0.30	0.24	iNVS	17.58	0.33	0.36
Zero-1-to-3	14.74	0.34	0.25	Zero-1-to-3	12.32	0.33	0.42
Google Scanned Objects				Common Objects in 3D			

Failure Mode

Investigating the lower Structural Similarity (SSIM) score, we find some common failure modes.

Failure Mode

Investigating the lower Structural Similarity (SSIM) score, we find some common failure modes.

iNVS struggles most when monocular depth estimator generates inaccurate depth.

Failure Mode #1: Deformed Partial View

Source View

Unprojected **Partial View**

- Imprecise depth leads to deformed partial view difficult to recover from during inpainting.
 - Inpainted **Ground Truth** view by iNVS

Failure Mode #2: Tiny holes can blend into texture.

occasionally cause reprojection holes to blend in.

Unprojected Inpainted view by iNVS **Partial View**

Failure Mode #3: Flipped pixels throw-off Inpainter.

Under large-viewpoint changes; we rely on inpainting mask to detect large ray angle changes, but it may fail.

Source View

Unprojected **Partial View**

Inpainted **Ground Truth** view by iNVS

Thanks for listening. Poster Today @ 6PM!

Webpage: https://yashkant.github.io/invs

Yash Kant¹, Aliaksandr Siarohin², Michael Vasilkovsky², Riza Alp Guler², Jian Ren², Sergey Tulyakov², Igor Gilitschenski¹

