Invertible Neural Skinning

Yash Kant, Aliaksandr Siarohin, Riza Alp Guler, Menglei Chai, Sergey Tulyakov, Igor Gilitschenski

Conference on Computer Vision and Pattern Recognition (CVPR), 2023

University of Toronto Snap Research

Reposing Task.

Given: Sequence of 3D scans (meshes) and SMPL-fitted poses.

SMPL-fitted poses

Canonical Space. [Background]

And we learn canonical shape implicitly using an occupancy network.

Canonical Representation

We first define a canonical space where the subject pose is fixed.

Skinning. [Background] Linear Blend Skinning (LBS) is a way to animate 3D surfaces based on relative bone configurations (canonical to deformed). Given **Output (Deformed Space)**

Novel Target Pose

Skinning. [Background]

For each point v_i on the surface, we define a set of weights w_{ij} that defines how much the j^{th} bone contributes to its movement.

Skinning. [Background]

And all weights for an individual point sum to one.

$$\sum_{j=1}^{|B|} w_{ij} = 1, \forall i$$

Skinning. [Background] To use LBS, we learn an extra MLP that predicts LBS weights for every point.

Output

LBS Animated

LBS Shortcomings. [Background]

But LBS cannot capture non-linear deformations of clothes and body tissue well.

Canonical Representation

LBS Weight Field

Novel Target Pose

LBS

 $\mathbf{p}_d^t = \mathbf{lbs}(\mathbf{w}_{lbs}, \mathbf{p}_c)$

LBS Animated

Ground Truth (expected)

Fixing LBS. [Background]

To overcome this, prior works (eg. SNARF) condition canonical representation on target pose.

Drawbacks of pose-conditioned canonical space.

first and then animate it. [expensive operation]

• The same subject has different meshes (vertices,

- For each new pose, we have to extract a new mesh
 - faces) for different poses. [no correspondences]

Invertible Neural Skinning [Approach]

Our core contribution is the use of **Invertible Neural Network (INN)** in the reposing pipeline.

11

Invertible Neural Skinning [Approach]

An Invertible Neural Network (INN) defines a bijective mapping between its input and output spaces.

 $x \in \mathbb{R}^3$

linear deformations, such as those of clothes.

Invertible Neural Skinning [Approach] We introduce **Pose-conditioned INN (PIN)** to handle non-

Bone Pose Encoder. [Approach]

Our second contribution is the bone pose encoder.

We encode each bone pose (rotation and translation) separately, and concatenate them.

Bone Pose Encoder. [Approach]

We take a dot product of this pose embedding with the spatial embedding.

This ensures that deformations in INN only occur when the pose-embedding is non-zero.

Pose-conditioned INN. [Approach]

Using bone pose encoder we build Pose-conditioned INN, and use it to model non-linear deformations.

Invertible Neural Skinning [Overall] We chain two PINs around an LBS block to build final reposing pipeline.

Invertible Neural Skinning [Overall]

Training: Sample points in the deformed space, and train our network to predict its occupancy [0/1], use BCE loss.

Invertible Neural Skinning [Overall]

Inference: First extract a mesh in canonical space only once, and repose it using learned LBS and PINs.

Metrics.

- Bounding Box IoU: How many points sampled uniformly in space have correct occupancy?
 - Surface IoU: How many points sampled around the ground truth surface have correct occupancy?

Results.

We match/outperform previous methods, and baselines on both metrics on CAPE (clothed human dataset).

		IoU Surface					IoU Bounding Box				
Subject	Clothing	AVG-LBS	FIRST-LBS	SNARF	SNARF-NC	INS (ours)	AVG-LBS	FIRST-LBS	SNARF	SNARF-NC	INS (ours)
Average		65.01%	57.41%	72.24%	66.89%	73.13%	65.12%	57.5%	72.17%	66.78%	73.19%

Results.

INS does not require mesh extraction at each step, so it is an order of magnitude faster than baseline.

Figure 5. **Reposing time comparison between INS and SNARF** We show the time taken by SNARF vs INS for reposing a mesh extracted at 128³ resolution across 125 different target poses. INS performs reposing an order of magnitude faster than SNARF.

Ablation Study.

Not using bone-pose multiplication, leads to a huge drop in performance.

#	Ablation	IoU Surface (%)	IoU Bounding Box(%)
1	INS(vanilla)	72.83	72.69
2	w/o Pose Mul.	61.94_10.89	$62.00_{-10.69}$
3	w/o SIREN	$69.67_{-3.16}$	$69.57_{-3.12}$
4	w/o Rotation	$71.91_{-0.92}$	$71.87_{-0.82}$
5	w/o \mathbf{H}_d	$72.66_{-0.17}$	$72.58_{-0.11}$
6	w/o \mathbf{H}_{c}	$67.89_{-4.94}$	$67.81_{-4.88}$
7	w/o LBS	$40.79_{-32.04}$	$40.65_{-32.04}$

Table 3. Ablation Table. We perform an ablation study of INS

Qualitative Results [INS].

Texture **does not overflow** across different regions.

INS deformations by \mathbf{H}_{c}

INS (final output)

Texture Propagation using INS – Fast and Consistent

Qualitative Results [SNARF].

Every frame (mesh) in canonical space has different topology

Texture Propagation in SNARF — Slow and Jittery

Causes jittery artifacts as frames have inconsistent textures.

SNARF (jittery output)

Pose-varying INS deformations.

Pose deformations by \mathbf{H}_{c}

Invertible Neural Skinning (Summary)

- an end-to-end learnable reposing technique, • preserves correspondences across poses, more accurate and captures pose-varying effects, • an order of magnitude faster than state-of-the-art.

Visit our poster on Thursday morning at CVPR.

Thanks!

