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Reposing Task.

Given: Sequence of 3D scans (meshes) and SMPL-fitted
poses.
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Canonical Space. [Background]

We first define a canonical space where the subject pose Is
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occupancy network.
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Skinning. [Background]

Linear Blend Skinning (LBS) is a way to animate 3D surfaces
based on relative bone configurations (canonical to
deformed).

Given Output (Deformed Space)
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Skinning. [Background]

For each point v; on the surface, we define a set of weights
w;; that defines how much the jth bone contributes to its

movement.



Skinning. [Background]

And all weights for an individual point sum to one.



Skinning. [Background]

To use LBS, we learn an extra MLP that predicts LBS
weights for every point.
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LBS Shortcomings. [Background]

But LBS cannot capture non-linear deformations of
clothes and boay tissue well.
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Fixing LBS. [Background]

To overcome this, prior works (eg. SNARF)
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Drawbacks of pose-conditioned canonical space.

® For each new pose, we have to extract a new mesh
first and then animate it. [expensive operation]
® [he same subject has different meshes (vertices,

faces) for different poses. [no correspondences]
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Invertible Neural Skinning [Approach]

Our core contribution is the use of Invertible Neural
Network (INN) in the reposing pipeline.
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Invertible Neural Skinning [Approach]

An Invertible Neural Network (INN) defines a bijective
mapping between its input and output spaces.
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Invertible Neural Skinning [Approach]

We introduce INN (PIN) to handle non-
iInear deformations, such as those ot clothes.
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Bone Pose Encoder. [Approach]

Our second contribution is the bone pose encoder.

We encode each bone pose (rotation and translation)
separately, and concatenate them.

Per Bone Encoder
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Bone Pose Encoder. [Approach]

We take a dot product of this pose embedding with the
spatial embedding.

This ensures that deformations in INN only occur when the
pose-embedding IS NoN-zero.
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Pose-conditioned INN. [Approach]

Using bone pose encoder we build Pose-conditioned INN,
and use It to model non-linear deformations.
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Invertible Neural Skinning [Overall]

We chain two PINs around an LBS block to build final
reposing pipeline.
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Invertible Neural Skinning [Overall]

Training: Sample points in the deformed space, and train
our network to predict its occupancy [0/1], use BCE loss.
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Invertible Neural Skinning [Overall]

Inference: First extract a mesh in canonical space only
once, and repose it using learned LBS and PINs.
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Metrics.

Bounding Box loU: How many points sampled uniformly
N space have correct occupancy?

Surface loU: How many points sampled around the
ground truth surface have correct occupancy?
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Results.

We match/outperform previous methods, and baselines on
both metrics on CAPE (clothed human dataset).

IoU Surface IoU Bounding Box
Subject Clothing AVG-LBS FIRST-LBS SNARF SNARF-NC INS (ours) AVG-LBS FIRST-LBS SNARF SNARF-NC INS (ours)
Average 65.01% 57.41% 72.24% 66.89% 73.13% 65.12% 57.5% 72.17% 66.78% 73.19%
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Results.

INS does not require mesh extraction at each step, so it is an
order of magnitude faster than baseline.

INS and SNARF Reposing Sequences
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Figure 5. Reposing time comparison between INS and SNARF
We show the time taken by SNARF vs INS for reposing a mesh
extracted at 128° resolution across 125 different target poses. INS
performs reposing an order of magnitude faster than SNARF.
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Ablation Study.

Not using bone-pose multiplication, leads to a huge drop In

performance.

# Ablation IoU Surface (%) IoU Bounding Box(%)
1 INS(vanilla) 72.83 72.69

2  w/o Pose Mul. 61.94_ 19 g9 62.00_10.69

3 w/o SIREN 69.67_3_ 16 69.57_3, 12

4  w/o Rotation 71.91_( 99 71.87 (.89

5 w/o Hd 72.66_(),17 72.58_(),1 1

6 w/o Hc 67.89_.1_94 6781_188

] w/o LBS 40.79_;;2,().1 40-65—32.()'*1

Table 3. Ablation Table. We perform an ablation study of INS
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Qualitative Results [INS].

Tex_ture applie_d only to the Texture does not overflow
fixed canonical frame. »  across different regions.

/ 3 N
INS (canonical space) INS deformations by H. INS (final output)

Texture Propagation using INS — Fast and Consistent
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Qualitative Results [SNARF].

Causes jittery artifacts as frames

Every frame (mesh) in canonical have inconsistent textures.

space has different topology

Texture applied separately slides 458

on top of underlying mesh. N _
lotice the blazer outline

changing colors (E3—E4)

: AN
SNARF (canonical space) Per-frame Texturing SNARF (jittery output)

(canonical)

Texture Propagation in SNARF — Slow and Jittery
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Pose-varying INS deformations.

Pose Free Canonical Space

PIN
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oot

Pose deformations by H

Pose deformations by H..

é/r'und Truth

Target / Animation Pose

INS output
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Invertible Neural Skinning (Summary)

® an end-to-ena reposing technigue,
® aCross poses,
® more and captures pose-varying effects,

® an than state-of-the-art.
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Visit our poster on Thursday morning at CVPR.
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