

NVS Task: Given a single image of an object, generate novel views.

Issues with Existing Approaches.

- Limited expressivity of Linear Blend Skinning (LBS).
- Require costly mesh extraction (marching cubes) to generate each new pose.

Efficient Reposing. Prior works (eg. SNARF) conditions canonical representation • Correspondences not preserved across poses. on target pose — which introduces non-linear deformations at the prices of Contributions: End-to-end learnable setup, preserves correspondences across expensive reposing (mesh extraction for each frame). poses, more accurate and order of magnitude faster than state-of-the-art.

Background – LBS and Invertible Neural Network

Invertible Neural Network (INN) defines a bijective mapping between its input and output spaces, which we condition on relative body pose to create **Pose-driven INN** (PIN).

Reposing task involves two main challenges.

- Modeling the **movement of human body**, and
- Handling the **deformations that occur in clothing** due to body movement.

Clothing Deformations. Linear Blend Skinning (LBS) cannot capture non-linear deformations of clothes and body tissue — as it interpolates linearly between poses.

$x \in \mathbb{R}^3$ Pose Conditioning

Pose-driven Invertible Neural Network (PIN)

Linear Blend Skinning. For each point v_i on the surface, we define a set of weights w_{ii} that defines how much the j^{th} bone contributes to its movement

Inference: First extract a mesh in canonical space only once, and repose it using learned LBS and PINs.

Bone Pose Encoder and Coupling Blocks

are composed of coupling layers, which reversibly transform one part of the input (3D point) based on the other Space Pose Aware Conditiona part as well as a provided condition (body pose).

Sergey Tulyakov¹ @SergeyTulyakov

Igor Gilitschenski² @igilitschenski

Results

Operation Maps

takes 0.13 seconds for an inference pass, which is an order of magnitude faster than 1.5 seconds taken by SNARF.

Metrics. We report the mean Intersection-over-Union of points sampled near the mesh surface (IoU Surface), and of points sampled uniformly in space (IoU Bounding Box).

		IoU Surface					IoU Bounding Box				
Subject	Clothing	AVG-LBS	FIRST-LBS	SNARF	SNARF-NC	INS (ours)	AVG-LBS	FIRST-LBS	SNARF	SNARF-NC	INS (ours)
Average		65.01%	57.41%	72.24%	66.89%	73.13%	65.12%	57.5%	72.17%	66.78%	73.19%

We match/outperform baselines on all metrics on CAPE (clothed human) dataset.

